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We present three 16-atom special quasirandom structures(SQS’s) for A1−xBx bcc substitutional alloys at
compositionsx=0.25, 0.50 and 0.75, respectively. The structures possess local pair and multisite correlation
functions that mimic those of the corresponding random bcc alloy. The introduction of these SQS’s allows for
the possibility of first-principles calculations of bcc solid solutions, even those with significant size-mismatch
or atomic relaxation. We have tested our SQS’s via first-principles calculations in the Mo–Nb, Ta–W and Cr–Fe
systems, in which the bcc solid solution is observed to be stable over the whole composition range. Our
first-principles SQS results provide formation enthalpies, equilibrium lattice parameters and magnetic moments
of these bcc alloys which agree satisfactorily with most existing experimental data in the literature. In an effort
to understand the atomic relaxation behavior in bcc solid solutions, we have also investigated the nearest
neighbor bond length distributions in the random bcc alloys. The proposed bcc SQS’s are quite general and can
be applied to other binary bcc alloys.
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I. INTRODUCTION

First-principles calculations based on density functional
theory1 are now routinely used to predict the thermodynamic,
structural, magnetic, electrical, and optical properties of a
wide range of materials. These methods are truly predictive
since only atomic numbers and crystal structure information
are needed as input. As many of these methods rely on the
construction of cells with periodic boundary conditions, the
calculations are fairly straightforward for perfectly-ordered
stoichiometric compounds. However, the situation is more
complicated when treating disordered solid solutions.

One way to treat random A1−xBx solid solutions would be
to construct a large supercell and randomly decorate the host
lattice with A and B atoms. Such an approach would neces-
sarily require very large supercells to adequately mimic the
statistics of the random alloy. Since density functional meth-
ods are computationally constrained by the number of atoms
that one can treat, this brute-force approach could be com-
putationally prohibitive. Hence, researchers have searched
for more elegant theories to treat a disorder, often in an av-
erage or mean-field sense: The coherent potential
approximation2 (CPA) is such a mean-field approach which
treats random A1−xBx alloys by considering the average oc-
cupations of lattice sites by A and B atoms. The dependence
of properties on thelocal environments surrounding atoms is
therefore not treated explicitly in CPA. However, in a real
(non-mean-field) random alloy, there exists a distribution of
local environments(e.g., A or B surrounded by the various
AmB8−m coordination shells withm between 0 and 8 in bcc
alloys), resulting in local environmentally-dependent quanti-
ties such as charge transfer and local displacements of atoms
from their ideal lattice positions.3–7 Experimental obser-
vations8 also show that, even in random A1−xBx solid solu-
tions, the average A–A, A–B and B–B bond lengths are gen-
erally different. In size-mismatched semiconductor alloys,

such local atomic relaxations have been shown to signifi-
cantly affect their thermodynamic and electronic
properties.3–6

The concept of special quasirandom structures(SQS’s)
was proposed by Zungeret al.3,4,9 to overcome the limita-
tions of mean-field theories, but without the prohibitive com-
putational cost associated with directly constructing large su-
percells with the random occupancy of atoms. SQS’s are
specially designedsmall-unit-cell periodic structures with
only a few (2–16) atoms per unit cell, which closely mimic
the most relevant, near-neighbor pair and multisite correla-
tion functions of the random substitutional alloys. Since the
SQS approach is not a mean-field one, a distribution of dis-
tinct local environments is maintained, the average of which
corresponds to the random alloy. Thus, a single DFT calcu-
lation of an SQS can give many important alloy
properties3,4,9 (e.g., equilibrium bond lengths, charge trans-
fer, formation enthalpies, etc.) which depend on the existence
of those distinct local environments. Furthermore, since the
SQS approach is geared towards relatively small-unit-cells,
essentially any DFT method can be applied to this approach,
including full-potential methods capable of accurately cap-
turing the effects of atomic relaxation.

The SQS approach has been used extensively to study the
formation enthalpies, bond length distributions, density of
states, band gaps and optical properties in semiconductor
alloys.3,4,9 They have also been applied to investigate the
local lattice relaxations in size-mismatched transition metal
alloys5–7,10 and to predict the formation enthalpies of Al-
based fcc alloys.11 However, to date, all the applications of
the SQS methodology are for systems in which the substitu-
tional alloy problem is fcc-based(e.g., fcc-based metals,
zinc-blende-based semiconductors, or rock-salt-based ox-
ides). No SQS’s for the bcc structure exist in the literature.
Therefore, in this work, we develop three SQS’s for binary
bcc alloys at compositionsx=0.25, 0.50 and 0.75, respec-
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tively. We demonstrate the usefulness of the present SQS’s
by applying them to the Mo–Nb, Ta–W and Cr–Fe systems,
in which the bcc structure is known to be stable over the
whole composition range. We also compare the predicted
formation enthalpies, equilibrium lattice parameters and
magnetic moments of the bcc alloys with the existing experi-
mental data in the literature.

II. GENERATION OF SPECIAL QUASIRANDOM
STRUCTURES

For a binary A1−xBx substitutional alloy, many properties
are dependent on theconfiguration, or the substitutional ar-
rangement of A and B atoms on the lattice type. These
configurationally-dependent properties(such as the energy)
can be characterized very efficiently by a “lattice algebra”:3–6

Pseudo-spin variables are assigned to each site,Si =−1s+1d if
an A (B) atom sits at sitei. We further define geometric
figures, f, symmetry-related groupings of lattice sites, e.g.,
single site, nearest-neighbor pair, three-body figures, etc.
These figures,f =sk,md can havek vertices and span a maxi-
mum distance ofm (m=1,2,3. . . , are thefirst, second and
third-nearest neighbors, etc.). By taking the product of the
spin variables over all sites of a figure, and averaging over all
symmetry-equivalent figures of the lattice, we obtain the cor-

relation functionsP̄k,m.3,4 For the perfectly random A1−xBx
bcc alloys, there is no correlation in the occupation between

various sites, and thereforeP̄k,m simply becomes the product
of the lattice-averaged site variable, which is related to the
composition bykSil=2x−1. Thus, for the perfectly random

alloy, the pair and multisite correlation functionsP̄k,m are

given quite simply askP̄k,mlR=s2x−1dk.
The SQS approach amounts to finding small-unit-cell or-

dered structures that possesssP̄k,mdSQS>kP̄k,mlR for as many
figures as possible. Admittedly, describing random alloys by
small unit-cell periodically-repeated structures will surely in-
troduce erroneous correlations beyond a certain distance.
However, since interactions between nearest neighbors are
generally more important than interactions between more
distant neighbors, we can construct SQS’s that exactly repro-
duce the correlation functions of a random alloy between the
first few nearest neighbors, deferring errors due to periodic-
ity to more distant neighbors.

In the present study, we have generated various SQS-N
structures(with N=2, 4, 8 and 16 atoms per unit cell) for the
random bcc alloys at compositionx=0.50 and 0.75 using the
gensqs code in the Alloy-Theoretic Automated Toolkit
(ATAT ).12 For each compositionx, our procedure can be de-
scribed as follows:(1) Usinggensqs, we exhaustively gener-
ate all structures based on the bcc lattice withN atoms per
unit cell and compositionx. (2) We then construct the pair

and multisite correlation functionsP̄k,m, for each structure.
(3) Finally, we search for the structure(s) that best match the
correlation functions of random alloys over a specified set of
pair and multisite figures. We obtained the SQS-16 structure
for x=0.5 by requiring that its pair correlation functions be
identical to those of the random alloy up to the fifth-nearest

neighbor. However, forx=0.75, no SQS-16 structures satisfy
this criterion. Therefore, we instead chose a structure whose
pair correlation functions are identical to the random alloy up
to the fourth-nearest neighbor. The other SQS-N structures
with N=2, 4 and 8 atoms per unit cell were generated using
an analogous approach. Of course, in general, the smaller the
unit cell SQS-N, the fewer pair correlations that match those
of the random alloy.

The lattice vectors and atomic positions of the obtained
SQS-N structures in their ideal, unrelaxed forms are given in
Table I, all in Cartesian coordinates. The definitions of the
multisite figures considered here are given in Table II. In
Table III, the pair and multisite correlation functions of the
SQS-N structures presented in Table I are compared with
those of the corresponding random alloys. We also give an
estimate of the errors due to periodicity, estimated as

om=1
4 sP̄2,m−s2x−1d2d2, over the first four neighbor pairs.

These errors are also shown in Table III, and they rapidly
decrease with increasingN. We note that the SQS-N struc-
tures forx=0.25 are obtained simply by switching the A and
B atoms in SQS-N for x=0.75. Since this amounts to replac-
ing all of the spin variables bySi →−Si, all even-body cor-
relations are equivalent forx=0.25 andx=0.75, while all
odd-body correlations simply change sign. Thus, the three-
body figures are largely responsible for asymmetries in the
formation energies betweenx=0.25 andx=0.75.

In all present calculations, unless specifically noted, we
use the 16-atom SQS’s to represent the random bcc alloys.
The extent to which they match the random alloy correla-
tions is comparable to those of the existing 16-atom SQS’s
for the fcc structure, which reproduce the pair correlation
functions of perfectly random fcc alloys accurately up to the
seventh-nearest neighbor atx=0.5 and third-nearest neighbor
at x=0.75.11 SQS-16 forx=0.5 is a triclinic-type structure

with space groupP1̄ (space group No. 2 in the International
Tables of Crystallography), and SQS-16 forx=0.75 is a
monoclinic-type structure with space groupCm (space group
No. 8 in the International Tables of Crystallography).13 Their
pictures are also given in Fig. 1 in their ideal, unrelaxed
forms.

III. FIRST-PRINCIPLES METHODOLOGY

First-principles calculations were performed using the
plane wave method with Vanderbilt ultrasoft
pseudopotentials,14,15 as implemented in the highly-efficient
Vienna ab initio simulation package(VASP).16,17 We used
the generalized gradient approximation(GGA)18 since we
have included Cr–Fe in our list of systems to test the SQS’s:
The local density approximation(LDA ) is known to incor-
rectly predict the ground state of Fe to be a nonmagnetic
close-packed phase, whereas GGA calculations correctly pre-
dict the ground state to be the ferromagnetic bcc phase.19 The
k-point meshes for Brillouin zone sampling were constructed
using the Monkhorst-Pack scheme20 and the total number of
k-points times the total number of atoms per unit cell was at
least 6000 for all systems. A plane wave cutoff energyEcut of
233.1, 235.2 and 296.9 eV were used for the Mo–Nb, Ta–W
and Cr–Fe system, respectively. All calculations include sca-
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lar relativistic corrections(i.e., no spin–orbit interaction).
Spin-polarized calculations were performed for the Cr–Fe

alloys, whereas all other calculations were nonmagnetic.
Pure bcc Fe is ferromagnetic while pure bcc Cr is antiferro-
magnetic with incommensurate spin density waves21. This
leads to quite a complicated magnetic structure in the
Cr1−xFex bcc alloys at low temperatures,22 which was not
investigated in the present study. Instead, since our SQS cal-
culations were performed at compositionsx=0.25, 0.5 and
0.75, all larger than the critical compositionx=0.2 beyond
which the Cr1−xFex bcc alloy becomes ferromagnetic,23 we
assumed a ferromagnetic structure for the Cr–Fe bcc alloys
in our spin-polarized calculations.

By computing the quantum-mechanical forces and stress
tensor, structural and atomic relaxations were performed and
all atoms were relaxed into their equilibrium positions using

a conjugate-gradient scheme. For the bcc alloys considered
in the present study, the SQS’s were fully relaxed with re-
spect to both the volume and shape of the unit cell as well as
all the atomic positions. In all our calculations, the magni-
tudes of cell vector distortions of the fully relaxed SQS’s
with respect to their ideal, unrelaxed unit cells are very
small, indicating structural stability of the bcc lattice for
these systems.

We obtained the formation enthalpies of the random bcc
alloys as

DHsxd = EsA1−xBxd − s1 − xdEsAd − xEsBd, s1d

whereEsAd, EsBd, andEsA1−xBxd are the first-principles cal-
culated total energies of the constituent pure elements A and
B and the corresponding SQS, respectively, each relaxed to

TABLE I. Structural descriptions of the SQS-N structures. Lattice vectors and atomic positions are given
in Cartesian coordinates, in units ofa, the bcc lattice parameter. Atomic positions are given for the ideal,
unrelaxed bcc sites.

x=0.5 x=0.75

SQS-16 Lattice vectors Lattice vectors

aW1=s−0.5,−1.5,−2.5d ,aW2=s−0.5,2.5,1.5d aW1=s1.0,−2.0,0.0d ,aW2=s0.0,−2.0,1.0d
aW3=s1.5,0.5,−0.5d aW3=s−2.0,0.0,−2.0d
Atomic positions Atomic positions

A− s0.0,0.0,−2.0d ,A− s0.5,1.5,−0.5d A− s0.0,−4.0,0.0d ,A− s0.0,−2.0,0.0d
A− s1.0,0.0,−2.0d ,A− s0.5,0.5,−0.5d A− s0.5,−2.5,0.5d ,A− s0.5,−3.5,0.5d

A− s0.5,−0.5,−2.5d ,A− s−0.5,1.5,−0.5d B−s−1.5,−0.5,−1.5d ,B−s−1.5,−1.5,−1.5d
A− s0.0,2.0,0.0d ,A− s0.5,2.5,0.5d B−s−1.0,−1.0,−1.0d ,B−s−0.5,−0.5,−0.5d

B−s1.0,2.0,0.0d ,B−s−0.5,0.5,−1.5d B−s−1.0,−4.0,−1.0d ,B−s−1.0,−2.0,−1.0d
B−s1.0,1.0,−1.0d ,B−s0.0,1.0,0.0d B−s−0.5,−1.5,−0.5d ,B−s0.0,−1.0,0.0d

B−s0.5,1.5,−1.5d ,B−s0.0,1.0,−1.0d B−s−1.0,−3.0,−1.0d ,B−s−0.5,−2.5,−0.5d
B−s0.0,0.0,−1.0d ,B−s0.5,0.5,−1.5d B−s−0.5,−3.5,−0.5d ,B−s0.0,−3.0,0.0d

SQS-8 aW1=s0.5,0.5,−1.5d ,aW2=s1.5,0.5,−0.5d aW1=s−1.0,0.0,0.0d ,aW2=s0.0,1.0,−1.0d,
aW3=s0.0,−2.0,0.0d aW3=s0.0,−2.0,−2.0d

A− s2.0,0.0,−2.0d ,A− s0.5,−1.5,−0.5d A− s−0.5,−0.5,−1.5d ,A− s−1.0,−1.0,−2.0d
A− s1.0,−1.0,−1.0d ,A− s1.5,−0.5,−1.5d B−s−0.5,−1.5,−2.5d ,B−s−0.5,0.5,−1.5d
B−s2.0,−1.0,−2.0d ,B−s0.5,−0.5,−0.5d B−s−1.0,−1.0,−3.0d ,B−s−1.0,0.0,−1.0d

B−s1.0,0.0,−1.0d ,B−s1.5,0.5,−1.5d B−s−0.5,−0.5,−2.5d ,B−s−1.0,0.0,−2.0d
SQS-4 aW1=s−0.5,0.5,0.5d ,aW2s0.0,−1.0,1.0d aW1=s−0.5,0.5,0.5d ,aW2=s0.0,−1.0,1.0d

aW3=s1.5,0.5,0.5d aW3=s1.5,0.5,0.5d
A− s0.5,−0.5,1.5d ,A− s1.0,0.0,1.0d A− s1.0,0.0,1.0d ,B−s0.0,0.0,1.0d
B−s0.0,0.0,1.0d ,B−s1.0,0.0,2.0d B−s1.0,0.0,2.0d ,B−s0.5,−0.5,1.5d

SQS-2 aW1=s−0.5,0.5,−0.5d ,aW2=s−0.5,−0.5,0.5d
aW3=s0.0,1.0,1.0d

A− s−1.0,1.0,1.0d ,B−s−0.5,0.5,0.5d

TABLE II. Vertices of the multisite figures, given in units ofa, the bcc lattice parameter.

Type Figure designation Vertices

Triplets (3,2) (0, 0, 0) (0.5, 0.5, 0.5) s0.5,−0.5,0.5d
(3,3) (0, 0, 0) (0.5, 0.5, 0.5) (1, 0, 1)

Quadruplets (4,2) (0, 0, 0) (0.5, 0.5, 0.5) s0.5,−0.5,0.5d (1, 0, 0)
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their equilibrium geometries. In the present study, all ele-
ments considered are observed at low temperature in the bcc
structure, and thus, pure element bcc energies were used as
reference states in Eq.(1).

To study the local atomic relaxations, the distributions of
nearest neighbor bond lengths in the random bcc alloys were

also obtained from the relaxed SQS’s. Since in a perfect bcc
structure each atom is coordinated by eight nearest neigh-
bors, we have taken the smallest eight interatomic distances
of each atom in the relaxed SQS’s to be representative of the
nearest neighbor bonds.We then categorized the bond dis-
tances into different bond types, e.g., A–A, A–B and B–B,
and computed the average bond lengths for each type.

IV. RESULTS AND DISCUSSIONS

A. Pure elements

The first-principles calculatedT=0 K lattice parameters
of bcc Nb, Mo, Ta, W, Cr and Fe, each relaxed to their
equilibrium volumes, are given in Table IV. Both spin-
polarized and non-spin-polarized calculations were per-
formed for bcc Cr and Fe. Consistent with previous DFT
studies, ferromagnetism substantially stabilizes the bcc Fe
(energy is decreased by ~0.56 eV/atom upon the inclusion
of spin polarization), making it the ground state of Fe. Spin-
polarized, ferromagnetic calculations for Cr resulted in a
nonmagnetic solution. According to Table IV, the lattice mis-
match(defined asDa/ ā ) in the Mo–Nb, Ta–W, and Cr–Fe
alloy systems are found to be 4.3%, 3.7% and 0%, respec-
tively.

B. Mo–Nb

Mo and Nb form a continuous bcc solid solution. No in-
termediate phases have been reported in this system.24 The

TABLE III. Pair and multisite correlation functions of SQS-N structures. The number in the square brackets next toP̄k,m gives the
degeneracy factor of the corresponding figure.

x=0.5 x=0.75

Random SQS-16 SQS-8 SQS-4 SQS-2 Random SQS-16 SQS-8 SQS-4

P̄2,1[4] 0 0 0 0 0 0.25 0.25 0.25 0.25

P̄2,2[3] 0 0 0 −0.3333 −0.3333 0.25 0.25 0.3333 0

P̄2,3[6] 0 0 −0.1667 0 −0.3333 0.25 0.25 0.1667 0.1667

P̄2,4[12] 0 0 0 0 0 0.25 0.25 0.25 0.25

P̄2,5[4] 0 0 −0.5 0 1 0.25 0.125 0.5 0.5

P̄2,6[3] 0 −0.3333 0.3333 −0.3333 1 0.25 0.0833 0.3333 0.3333

P̄2,7[12] 0 0 0 0 0 0.25 0.25 0.25 0.25

P̄3,2[12] 0 0 0 0 0 0.125 0.1667 0.1667 0

P̄3,3[12] 0 0 0 0 0 0.125 0.0833 0.1667 0.1667

P̄4,2[6] 0 0 −0.3333 −0.3333 −0.3333 0.0625 0.1667 0 0

Error 0 0 0.0278 0.1111 0.2222 0 0 0.0139 0.0694

FIG. 1. Crystal structure of the SQS-16 structures in their ideal,
unrelaxed forms. Dark and light spheres represent A and B atoms,
respectively.

TABLE IV. First principles (VASP–GGA) calculated equilib-
rium lattice parameter for pure elements in the bcc structure. Spin-
polarized calculations were performed for Cr and Fe in their ferro-
magnetic(FM) state.

Element Mo Nb Ta W Cr(FM) Fe (FM)

a sÅd 3.15 3.29 3.29 3.17 2.85 2.85
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equilibrium lattice parameters of Mo–Nb bcc alloys obtained
from the relaxed SQS’s are plotted in Fig. 2 together with
those of the pure bcc Mo and Nb given in Table IV. The
experimental measurements by Goldschmidt and Brand25

and Catterall and Barker26 are also included for comparison.
Our calculations are in good agreement with experiments.
Both show a small negative deviation from the Vegard’s law,
i.e., asA1−xBxd=s1−xdasAd+xasBd, whereasA1−xBxd, asAd
and asBd are the equilibrium lattice parameters of alloy
A1−xBx and constituent pure elements A and B, respectively.
In Fig. 3, the predicted formation enthalpies of random
Mo–Nb bcc alloys are compared with the experimental mea-
surements by Singhal and Worrell24 at 1200 K using a solid

state galvanic cell. Fairly satisfactorily agreement has been
reached with the largest discrepancy less than 2 kJ/mol.
Sigli et al.27 also calculated the formation enthalpies of
Mo–Nb bcc alloys using the TB–CPA–GPM approach. For
the purpose of comparison, their results are also shown in
Fig. 3, which agree quite well with our SQS’s results. In all
three cases, the asymmetry of the formation enthalpy with
respect tox=0.50 is quite small.

The negative formation enthalpies indicate that Mo–Nb is
an ordering-type system. Sigliet al.27 predicted that an or-
dered B2 structure is stable in Mo–Nb below 830 K. Ne-
glecting the effects of vibrational entropy and assuming an
ideal configurational entropy of mixing for the Mo1−xNbx bcc
solid solution, i.e.,DSideal=−Rsx lnsxd+s1−xdlns1−xdd, we
obtain a crude estimate the A2–B2 order–disorder transition
temperature at compositionx=0.5 in Mo–Nb using the fol-
lowing equation:

Tc <
DHbcc

SQSsx = 0.5d − DHB2

R ln 2
. s2d

Our first-principles calculation of the formation enthalpy of
the fully ordered MoNb B2 structure gives −13.1 kJ/mol.
Using Eq.(2), we thus obtainTc<731 K, in good agreement
with the temperature of 830 K predicted by Sigliet al. 27

Since this temperature is relatively low compared with the
melting temperature of Mos2896 Kd and Nbs2750 Kd, slug-
gish kinetics might explain why the B2 structure or other
ordered phases have not been observed experimentally. How-
ever, our results do predict the existence of ordered struc-
tures in Mo–Nb which to date have not yet been observed.
Therefore, we assert that experimental re-examination of the
low-temperature phase stability of Mo–Nb would be of in-
terest.

C. Ta–W

Ta and W also form a continuous bcc solid solution with
no intermediate phases.28 The predicted equilibrium lattice
parameters of Ta–W bcc alloys are shown in Fig. 4, in good
agreement with the existing experimental measurements.29

Both show a negative deviation from Vegard’s law. In Fig. 5,
the predicted formation enthalpies of random Ta–W bcc al-
loys are compared with the experimental solid state galvanic
cell measurements of Singhal and Worrell.28 In Figs. 4 and 5
we also show the formation enthalpies of random Ta–W bcc
alloys calculated by Turchiet al.30 using the TB–LMTO–
ASA–CPA approach. Interestingly, although experimental
formation enthalpies exhibit a strong asymmetry towards the
Ta-rich side, both SQS and CPA calculated formation enthal-
pies exhibit a strong asymmetry towards the W-rich side.
Such large discrepancies between our calculations and ex-
perimental measurements on the W-rich side may be due to
the slow kinetics at the experimental temperature of 1200 K,
which makes thermodynamic equilibrium difficult to reach,
as was also pointed out by Turchiet al.30 To investigate this
hypothesis, we examined the tracer diffusivity of Ta in bcc
W at 1200 K using the Arrhenius relationDTa

W =6.2
310−4Exps−601241/RTd obtained by Arkhipovaet al.31 and
obtained an extremely low value of 4.186310−30 m2/s. The

FIG. 2. Equilibrium lattice parameters of Mo–Nb bcc alloys as a
function of composition.

FIG. 3. Formation enthalpies of Mo–Nb bcc alloys as a function
of composition.
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fact thatDTa
W dominates the interdiffusion coefficients in the

W-rich Ta–W bcc alloys could explain why the discrepancies
between SQS calculations and experiments are largest on the
W-rich side. However, we should also note other possibilities
to explain this discrepancy:(1) Our SQS are constructed to
mimic the perfectly random state, and thus short-range order
in these alloys could also contribute to the discrepancy.(2)
Although the SQS possess many pair and multibody correla-
tions that match the random alloy statistics, there are devia-
tions from the random alloy correlations for longer-ranged
pair and other multibody interactions. If some of these inter-
actions are significant, they could contribute to the discrep-
ancy.(3) Finally, we should note that experimental measure-

ments of formation enthalpies down to an accuracy of
1 kJ/mole are quite difficult, and it is possible that the ex-
perimental data is partly responsible for the discrepancy.

It is interesting that the results of Turchiet al.30 overesti-
mate the formation enthalpies relative to our SQS results
even though their CPA calculations ignore such important
physical effects as atomic relaxations, which will lower the
formation enthalpy. We attribute such apparent discrepancies
to the atomic sphere approximation(ASA) employed in their
CPA calculations.

The negative formation enthalpies indicate that Ta–W is
also an ordering-type system. Turchiet al.30 predicted that
the Ta–W bcc alloys have a strong tendency toward B2 or-
dering. In the present study, we obtained via first-principles
calculations the formation enthalpy of the fully ordered TaW
B2 structure to be −11.2 kJ/mol. Assuming an ideal configu-
rational entropy of mixing, the A2–B2 order-disorder transi-
tion temperature at compositionx=0.5 in Ta–W is thus esti-
mated using Eq.(2) to beTc<552 K, which is substantially
lower than the temperatures predicted by Turchiet al.30 The
low order–disorder transition temperature could again ex-
plain why the B2 structure has not been observed experimen-
tally in Ta–W. But again, our calculations predict the(low
temperature) existence of ordered structures in the Ta–W sys-
tem that have previously not been reported, and therefore
future experimental work on this system would be of inter-
est.

D. Cr–Fe

Cr and Fe form a continuous bcc solid solution with a
miscibility gap appearing at low temperatures.32 A sigma
phase also forms at intermediate temperatures.32 In Fig. 6,
the predicted equilibrium lattice parameters of ferromagnetic
Cr–Fe bcc alloys are compared with available experiments.33

Figure 7 also gives the predicted magnetic moments(in mB

FIG. 4. Equilibrium lattice parameters of Ta–W bcc alloys as a
function of composition.

FIG. 5. Formation enthalpies of Ta–W bcc alloys as a function
of composition.

FIG. 6. Equilibrium lattice parameters of Cr–Fe bcc alloys as a
function of composition.
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per atom) of random ferromagnetic Cr–Fe bcc alloys to-
gether with the available experiments34,35 and the calculated
KKR–CPA results by Kulikov and Demangeat.36 In both
cases, the discrepancies near the Cr corner are due to the fact
that we treat Cr as ferromagnetic instead of antiferromag-
netic. In Fig. 6, we also include our calculated equilibrium
lattice parameter of antiferromagnetic bcc Cr with a com-
mensurate wave vector using a B2 unit cell, which is in good
agreement with the measured value. We found that antiferro-
magnetism lowers the energy of bcc Cr by,0.046 eV/atom.

Dench37 experimentally measured the formation enthalp-
ies of bcc Cr–Fe alloys at 1400 K. This temperature is well
above the Curie(or Néel) temperature of Cr–Fe bcc alloys,32

therefore, the measured alloys were all in the paramagnetic
state. However, the present spin-polarized calculations corre-
spond to the ferromagnetic state of the alloys. Akai and
Dederichs38 and Olssonet al.39 calculated using the KKR–
CPA and FCD–EMTO–CPA approach, respectively, the
structural energy differences between the paramagnetic and
ferromagnetic states of random Cr–Fe bcc alloys,DEFM→PM,
which are found to be substantial in the Cr–Fe system. In
both studies, the disordered local moment(DLM ) model was
used, which treats the paramagnetic Cr1–xFex alloy as a ran-
dom quaternarysCr↑ ,Cr↓ d1−xsFe↑ ,Fe↓ dx system with equal
number of up-spin and down-spin atoms. Since the Cr–Fe
system is a perfectly lattice-matched system with
Da/ ā,1%, one might expect that the atomic relaxations are
small, and that the neglect of them in the CPA should repre-
sent only a minor approximation. We will investigate more
the relaxation behavior of this alloy below.

Figure 8 shows the CPA calculated formation enthalpy
difference between the paramagnetic and ferromagnetic
states of Cr–Fe bcc alloys,38,39 defined as

DHFM→PMsxd = DEFM→PMsA1−xBxd − s1 − xdDEFM→PMsAd

− xDEFM→PMsBd. s3d

By adding DHFM→PM to our SQS calculated formation en-

thalpies of ferromagnetic Cr–Fe bcc alloys, we obtain the
formation enthalpy in the paramagnetic state. Our results are
shown in Fig. 9 together with the corresponding experimen-
tal data37 and the CPA DLM results by Olssonet al.39 We
find good agreement between the theoretical and experimen-
tal formation enthalpies with the largest discrepancy less
than 1 kJ/mol. We also note that the positive formation en-
thalpy for the random alloy is normally an indication of(but
does not guarantee) a phase-separating tendency in this sys-

FIG. 7. Magnetic moment of Cr–Fe bcc alloys as a function of
composition. FIG. 8. CPA calculated formation enthalpy difference between

the paramagnetic and ferromagnetic states of Cr–Fe bcc alloys.

FIG. 9. Theoretical and experimental formation enthalpies of
Cr–Fe bcc alloys as a function of composition. The SQS paramag-
netic results are obtained by addingDHFM→PM (from Refs. 38 and
39, respectively) to our SQS calculated formation enthalpies of fer-
romagnetic Cr–Fe bcc alloys.
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tem, consistent with the observed miscibility gap.32

Non-spin-polarized calculations were also performed on
the present SQS’s, which, however, predicted the wrong sign
of the formation enthalpies, as shown in Fig. 9. Thus, we can
conclude that the nonmagnetic calculations are a particularly
poor representation of the paramagnetic state for these al-
loys.

E. Convergence tests

Figure 10 gives the formation enthalpies of various
SQS-N structures forx=0.5 withN=2, 4, 8 and 16 atoms per
unit cell, respectively. For all three systems considered in the
present study, we observed a rapid convergence of the SQS
calculated formation enthalpies with respect toN. Remark-
ably, in Mo–Nb and Ta–W, even calculations on SQS-2 pre-
dicted well within 1 kJ/mol the results obtained using SQS-
16. From Table III, we see that even the SQS-2 has a nearest-
neighbor correlation which matches that of the random alloy
precisely. Thus, the rapid convergence of SQS-N with re-
spect toN in for Mo–Nb and Ta–W could be an indication
that the energetics of these alloy systems are dominated by
nearest-neighbor pair interactions. In Cr–Fe, the convergence
is still rapid, though somewhat less so, possibly due to the
magnetic effects. Similar rapid convergence behavior of the
fcc SQS’s were also observed by Zungeret al.3,4

F. Bond lengths in random alloys

In Fig. 11, the average nearest neighbor A–A, A–B and
B–B bond lengths in random Mo–Nb, Ta–W and Cr–Fe bcc
alloys are presented. In all systems, our results clearly show
three distinct nearest neighbor bond lengthsRA−A, RA−B and
RB−B at all compositions, all deviating from that of the aver-
age lattice, i.e.,R=Î3/2a,a being the equilibrium lattice pa-

FIG. 10. SQS calculated formation enthalpies of Nb–Mo, Ta–W
and Cr–Fe bcc alloys atx=0.5 as a function ofN, the number of
atoms per unit cell.

FIG. 11. SQS calculated average nearest-neighbor bond lengths
as a function of composition in random bcc alloys. The dashed lines
represent the average lattice.
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rameter of the alloy. Nevertheless, the weighted average of
these bond lengths, i.e.,xA

2 RA−A +2xAxBRA−B +xB
2RB−B, do

follow R, as shown by the dashed lines in Fig. 11. In the
Mo–Nb and Ta–W systems, the bond lengths follow the “ex-
pected” behavior in that the bonds between unlike atoms are

intermediate between the large–large and small–small like
atom bonds.

However, the relaxation behavior of Cr–Fe is somewhat
unexpected: Even though the Cr–Fe system is a perfectly
lattice-matched system, the average Cr–Cr, Cr–Fe and Fe–Fe
bond lengths are actually quite different. Thus, in this sys-
tem, the atomic relaxation is not simply mediated by tradi-
tional atomic size mismatch considerations, but must also
have a contribution due to electronic or band structure ef-
fects. We see that a small lattice-mismatch does not neces-
sarily guarantee small atomic relaxation, as is often asserted.
We find the average Cr–Fe bond length to be larger than
those of both Cr–Cr and Fe–Fe bonds. To further investigate
this issue, we also give in Fig. 12 the predicted nearest
neighbor bond length distributions in Cr–Fe bcc alloys. The
horizontal lines correspond to the average bcc lattice. As
shown, there exists a dispersion of bond lengths for all three
types of bonds, i.e., Cr–Cr, Cr–Fe and Fe–Fe, indicating the
existence of local lattice relaxations. This unusual structural
behavior of the Cr–Fe bcc alloys is interesting in light of the
phase-separating tendency in this system: a miscibility gap is
experimentally observed in this system at low
temperatures.32

V. SUMMARY

We proposed three 16-atom SQS supercells to mimic the
pair and multisite correlation functions of random binary bcc
substitutional alloys. In each of them, a distribution of dis-
tinct local environments is created, the average of which cor-
responds to the random alloy. Those SQS’s were then applied
to predict the lattice parameters, formation enthalpies, mag-
netic moments and bond lengths of Mo–Nb, Ta–W and
Cr–Fe bcc alloys, and the results are in good agreement with
the experimental data in the literature, when available. The
magnetic effects were found to be significant in Cr–Fe, and a
combination of our ferromagnetic SQS calculations with pre-
vious calculations on the paramagnetic state result in forma-
tion energies that agree well with experimental measure-
ments. The convergence tests showed that 16-atom SQS’s
provide good approximations of the real random solutions,
and even very small 2-atom SQS’s provide reasonably accu-
rate energetics. Thus, this two-atom structure could be used
as a very simple “screen” for bcc random alloy energetics.
The calculated nearest neighbor bond lengths showed that,
even in perfectly lattice-matched systems such as Cr–Fe, the
average A–A, A–B and B–B bond lengths can be quite dif-
ferent. Finally, the presently proposed SQS’s are general and
can be applied to other binary bcc alloys.
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FIG. 12. SQS calculated nearest neighbor bond length distribu-
tions in random Cr1−xFex bcc alloys at compositions(a) x=0.25,(b)
x=0.5 and(c) x=0.75. The horizontal lines correspond to the aver-
age bcc lattice.
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