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Abstract

Establishing process–structure–property relationships is an important objective in the paradigm of materials design in order to reduce
the time and cost needed to develop new materials. A method to link phase-field (process–structure relations) and microstructure-sen-
sitive finite-element (structure–property relations) modeling is demonstrated for subsolvus polycrystalline IN100. A three-dimensional
experimental dataset obtained by orientation imaging microscopy performed on serial sections is utilized to calibrate a phase-field model
and to calculate inputs for a finite-element analysis. Simulated annealing of the dataset realized through phase-field modeling results in a
range of coarsened microstructures with varying grain size distributions that are each input into the finite-element model. A rate-depen-
dent crystal plasticity constitutive model that captures the first-order effects of grain size, precipitate size and precipitate volume fraction
on the mechanical response of IN100 at 650 �C is used to simulate stress–strain behavior of the coarsened polycrystals. Model limitations
and ideas for future work are discussed.
� 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Establishing process–structure–property relationships is
essential in leveraging modeling and simulation to reduce
the time and cost needed to develop new materials or
improve existing materials [1,2] and is at the core of materi-
als design. Fig. 1 illustrates how the process–structure–prop-
erty relationships form overlapping regions that represent
physical couplings and transfer of related model informa-
tion in materials design. Just as a material’s microstructure
is coupled to the process path, its mechanical properties
are directly correlated to the material microstructure.

Substantial progress has been made in connecting the
process–structure–property relationships through advances
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in computational materials science and materials character-
ization methods. For example, continuum mechanics-
based techniques such as phase-field modeling (PFM)
enable a direct linkage between the process–structure rela-
tionships by simulating the nucleation and growth of
phases/grains within a material [3,4]. Likewise, microstruc-
ture-sensitive finite-element modeling (FEM) facilitates the
structure–property correlation by predicting the aniso-
tropic mechanical response of materials under thermome-
chanical loading conditions, including the role of
mesoscopic microstructure morphology (e.g. grains,
phases) [5–7]. Further advances in characterization tech-
niques such as automated electron backscatter diffraction
(EBSD) methods [8–10] and three-dimensional (3-D)
X-ray diffraction [11,12] allow for digital representation
of polycrystalline microstructures and facilitate calibration
of the computational models.
rights reserved.

http://dx.doi.org/10.1016/j.actamat.2012.06.058
mailto:bfromm3@gatech.edu
http://dx.doi.org/10.1016/j.actamat.2012.06.058


Process PropertyStructurePFM FEM

Fig. 1. Developing linkages between phase-field and finite-element models
facilitate process–structure–property predictions that are at the core of
materials design. The two-way connection between process–structure and
structure–property relations enables the development of top-down mate-
rial design strategies.
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Due to the time and cost required to develop new mate-
rials, there is considerable incentive to apply computational
materials science approaches such as PFM and FEM to the
materials design and development process. A long-term
goal within the materials community is the development
of materials design methods that permit top-down assess-
ment of the process–structure–property relations based
on bottom-up modeling and characterization at various
scales. This type of methodology will enable designers to
tailor materials that are optimized for specific applications.
An important step towards achieving these goals is to
develop a two-way coupling between PFM and FEM mod-
eling techniques, as depicted in Fig. 1. Such a coupling will
allow for the exchange of key parameters between the mod-
els. For example, values of dislocation density from the
PFM can be transferred to the FEM to enable more accu-
rate calculation of local stress and strain. Conversely,
updated values of crystallographic orientation, position,
or elastic strain obtained from the FEM can be conveyed
back to the PFM to improve predictions of microstructure
evolution. For the present work, only a one-way coupling
is needed to predict mechanical response. However, future
work to establish top-down design procedures will require
the use of a bidirectional linkage.

The purpose of this paper is to link PFM and FEM to
establish an interface between process–structure and struc-
ture–property relations. The approach is demonstrated for
a powder metallurgy-processed Ni-base superalloy, IN100,
utilizing a 3-D microstructure characterized experimentally
through EBSD performed on serial sections to serve
primarily as input into PFM simulations. Various micro-
structures obtained through the simulated annealing
(coarsening) of the dataset based on application of the
PFM are input into a microstructure-sensitive crystal plas-
ticity formulation to predict the stress–strain response as a
function of successively increasing mean grain size.

2. Methodology

2.1. Phase-field model

Grain growth of polycrystalline materials can be
modeled using the phase-field method. Both nucleation
and growth of grains can be considered. The PFM
approach described here is based on the work of Chen
and Yang [3], who utilized a set of non-conserved order
parameters to represent crystallographic texture (crystallo-
graphic orientation of each grain) within the model. Chen
and associates have successfully applied PFM to both 2-
D [13–15] and 3-D problems [4,15,16].

The PFM used in this study is summarized in Table 1. A
3-D formulation is employed wherein the polycrystalline
grain structure is represented by a set of Q-order parame-
ters {(g1(r, t),g2(r, t), . . . ,gQ(r, t)} representing grain orien-
tation, with r defining the spatial position, t the
simulation time, and Q the number of grains in the simula-
tion. Grain boundary evolution is described by solving the
time-dependent Ginzburg–Landau equations for each
order parameter, as shown in Eq. (1).

Here Li are grain boundary mobility coefficients, F(t)
represents the total free energy of the microstructure, and
fo is known as the local free energy density. The ji in Eq.
(2) are positive-valued gradient energy coefficients. For
local free energy parameters that satisfy the conditions
a = b, c > a/2, and for a, b, and c > 0, the local free energy
in Eq. (3) satisfies minima at (g1,g2,gQ) = (±1,0,0), and
(0,±1, . . . , 0), and (0, 0, . . . ,±1). Recent work by Svoboda
et al. [17] has demonstrated the equivalence of the time-
dependent Ginzburg–Landau PFM approach to grain
boundary migration with the thermodynamic extremal
principle (TEP) of maximum dissipation for processes
assumed to follow linearized non-equilibrium kinetics (ther-
modynamics force–flux relations). The TEP has been
applied by Svoboda and Fischer [18] to coarsening of distri-
butions of precipitates in multicomponent systems as well.

Substituting Eqs. (2) and (3) into (1) and simplifying
yields the grain growth evolution equation found in Eq.
(4). A forward Euler scheme in Eq. (5) is used to solve
the time-dependent partial different equation. To avoid
aphysical coalescence of the grains which mainly takes
place during the early stage of the simulation, to reduce
simulation time, and to minimize memory usage, the active
parameter tracking (APT) algorithm of Vedantam and Pat-
naik [19] is applied such that the evolution equations are
solved for only the active order parameters corresponding
to grain boundary regions. A more in-depth discussion of
PFM can be found in the cited literature. PFM results
are presented in Section 4.

2.2. Microstructure-sensitive finite-element model

Ni-base superalloys are used in high-temperature appli-
cations requiring high strength, excellent damage tolerance
and long-term creep resistance. Their yield strength at ele-
vated temperature stems from the coherent dispersion of
Ni3Al precipitates within the face-centered cubic (fcc) solu-
tion-strengthened Ni matrix that provides resistance to slip.
The microstructure-sensitive crystal plasticity model
employed here is based on the work of Shenoy and
McDowell [7], with later updating and clarification of the



Table 1
Summary of equations used in the phase-field model.

Time-dependent Ginzburg–Landau evolution equation

@giðr; tÞ
@t
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equations and model parameters by Przybyla and McDo-
well [20], the latter being used in this work. The model is
rate dependent and is calibrated to capture the mechanical
response of IN100 at a simulation temperature of 650 �C
(1200 �F). It incorporates the first-order effects of grain
size, precipitate size and precipitate volume fraction, utiliz-
ing internal state variables to account for dislocation den-
sity and back-stress evolution. Table 2 summarizes the
constitutive equations.

The kinematics of crystal plasticity are based on disloca-
tion glide through the crystal lattice on slip planes and in
slip directions. As evident in Eq. (6), the macroscopic
deformation gradient, F, is multiplicatively decomposed
into a plastic part (FP) and an elastic part (Fe). By invoking
an isoclinic intermediate configuration shown in Fig. 2, the
plastic deformation gradient can be defined to represent the
collective glide of dislocations on each slip plane with the
assumption that the crystal lattice is unaltered. Relative
to the isoclinic configuration, the lattice is then assumed
to undergo elastic distortion and rigid body rotation. The
plastic velocity gradient in the intermediate configuration
is calculated by summing the shearing rates _ca on the ath
slip system, as given in Eq. (8). The terms sa

0 and ma
0 are unit

vectors in the slip and slip plane normal directions,
respectively.

The polycrystalline model employs a two-term flow rule
[21], where Da is the drag stress and ja is the threshold
stress for the ath slip system (see Eq. (8)). The first term
is intended to capture the dominant cyclic behavior with
the threshold stress playing the role of yield strength. The
second term describes thermally activated flow over a
broader range of flow stress, including creep behavior
below the initial yield strength. Additionally, for the slip
system, the long-range Bauschinger effect is captured via
the back-stress component. Short-range Bauschinger effects
are associated with intergranular interaction, arising natu-
rally from the polycrystalline FEM.

The hardening of the threshold stress, ja
k, in Eq. (9) fol-

lows a Taylor relationship and is a function of the initial
critical resolved shear stress, ja

o;k, a statistical coefficient
accounting for the spatial arrangement of dislocations, b,
the volume-averaged shear modulus, ~l, the volume-aver-
aged Burgers vector, ~b, and the dislocation density, qa

k. Dis-
tinct initial critical resolved shear stresses are defined in
Eqs. (12) and (13) for the 12 octahedral and 6 cube slip sys-
tems, respectively, where f 0p1; f 0p2, and f 0p3 are normalized
volume fractions of primary, secondary and tertiary precip-
itates. The terms cp1, cp2, cp3; cgr are calibration coeffi-
cients, and d1; d2; d3; dgr represent the average sizes of
primary, secondary and tertiary precipitates along with
the average grain size. Furthermore, CAPB is the anti-phase
boundary energy, nj is an exponent in the range 1.0–1.2,
and sa

o;c is the athermal lattice resistance of the solid solu-
tion c-phase.

Non-Schmid effects [6,22–25] are accounted for in Eq.
(16), where hpe; hcb; and hse are constants. The terms
sa

pe; sa
cb; and sa

se are the resolved shear stresses on the pri-
mary, cube and secondary slip systems. It should be noted
that non-Schmid effects are only admitted on the octahe-
dral slip systems. Eq. (17) prescribes evolution of disloca-
tion density, where Zo is the coefficient that moderates
the scale effect associated with precipitation spacing



Table 2
Microstructure-sensitive crystal plasticity model.

Multiplicative decomposition of the deformation gradient
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Anti-phase boundary energy, normalized precipitate volume fractions and non-Schmid terms
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Evolving dislocation density equation (internal state variable)
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ffiffiffiffiffi
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k

p
� k2q

a
k

� �
j _caj ð17Þ

Precipitate scaling and effective spacing terms
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Backstress term (internal state variable)
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Ratio of geometrically necessary total dislocation density
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B.S. Fromm et al. / Acta Materialia 60 (2012) 5984–5999 5987



tertiary γ ’

secondary  γ ’

carbides

primary γ ’

secondary  γ ’

Fig. 3. TEM micrographs of IN100 microstructure from Ref. [30].
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Fig. 2. Elastoplastic decomposition of the deformation gradient tensor.

Fig. 4. Reconstructed 96 � 46 � 36 lm3 IN100 microstructure [31].
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attributed to the production of geometrically necessary dis-
locations. An effective value of precipitate spacing is
defined by Eq. (18). Additionally, Eq. (17) captures the
hardening and dynamic recovery of the material based on
the Kocks–Mecking model [26,27]. The back-stress in Eq.
(20) evolves in rough accordance with the ratio of geomet-
rically necessary to total dislocation densities (Eq. (21)). As
previously mentioned, the back-stress term captures the
Bauschinger effect associated with the heterogeneous pile-
up of dislocations at precipitate–matrix interfaces, as well
as slip reversibility under low-cycle fatigue loading. Com-
plete details about the development and calibration of the
polycrystalline IN100 microstructure-sensitive model can
be found in Ref. [7]. The model was implemented as a
user-defined material subroutine (UMAT) within the ABA-
QUS [28] finite-element platform. Simulation results are
presented in Section 4.

3. IN100 microstructure

Alloys such as IN100 are produced by a powder metal-
lurgy process, followed by isothermal forging and a multi-
step heat treatment. The material is categorized according
to the particular heat treatment applied to the alloy, either
subsolvus or supersolvus. A subsolvus material is processed
at a temperature below the solutionizing temperature,
whereas a supersolvus material is processed at a tempera-
ture above the solutionizing temperature. Both materials
undergo further aging steps to optimize their c0 precipitate
size distributions and volume fractions in order to enhance
the mechanical performance of the material.

The IN100 material considered here consists of a fine-
grained subsolvus microstructure that was extensively
characterized by Wusatowska-Sarnek et al. [29,30]. The
microstructure consists of a trimodal distribution of pri-
mary c0 (�1.71 lm diameter), secondary c0 (�120.2 nm)
and tertiary c0 (�8.5 nm) precipitates. The average grain
size of the material is �3.5 lm. Volume fractions of the pri-
mary c0, secondary c0 and tertiary c0 are 0.199, 0.305 and
0.051, respectively. Two transmission electron microscopy
(TEM) images from Ref. [30] are shown in Fig. 3. The bot-
tom image is a bright-field micrograph consisting of pri-
mary and secondary c0 precipitates. The top image is a
higher-resolution dark-field micrograph that captures the
distribution of tertiary and secondary precipitates within
the structure. The material also contains carbide precipi-
tates and twin boundaries (not shown in Fig. 3).

A 3-D digital representation of the initial IN100 micro-
structure was created via an automated serial sectioning
EBSD scheme implemented by Groeber et al. [31]. It con-
sists of 184 serial sections reconstructed into a volume of
96 lm � 36 lm � 47 lm with a spatial resolution of
250 nm in the x-, y- and z-directions. Additionally, the
crystallographic texture for each of the approximately
10.5 million voxels was tabulated from the EBSD process
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with grain identification and assignment based on a of 5�
angle of misorientation. The process resulted in the 4373
grains plotted in Fig. 4. Carbides were not captured in
the process and twin boundaries were removed from the
reconstructed dataset, resulting in 3165 net grains (1818
non-edge grains). A detailed description of the character-
ization and reconstruction procedures can be found in
Ref. [31].
0 time ste
3165 gra

(initial data

100 time steps
2463 grains

200 time steps
1898 grains

Fig. 6. Output from the grain growth simulations at time increments of 0, 100
1000 time steps.
The line intercept method described in ASTM E112 [32]
is commonly used to measure grain size distributions. This
stereographic method involves the counting of grain
boundary intersections with a grid of lines that are overlaid
onto a 2-D micrograph. Another approach used in orienta-
tion imaging microscopy (OIM) is to calculate the equiva-
lent circle diameter [33]. In this method, the area (A) of
each grain within the 2-D plane is tabulated. Then, by
ps
ins
set)

1000 time steps
790 grains

500 time steps
1222 Grains

(111)

(101)(001)

, 200, 500 and 1000. The number of grains reduced from 3165 to 790 over



Table 3
Summary of grain size statistics for the IN100 grain growth simulation.

Time
steps

Number of
grains

Non-edge
grains

Average grain
volume (lm3)

Average equivalent
sphere diam. (lm)

Lognormal
fit (lm)

Lognormal error
(average/st.dev.)

Gamma fit
(lm)

Gamma error
(average/st.dev.)

0 3165 1818 45.27 ± 75.08 3.64 ± 1.73 3.64 ± 3.17 0.1%/83.4% 3.64 ± 2.72 0.0%/57.4%
100 2463 1427 54.61 ± 91.81 3.70 ± 2.06 3.81 ± 7.33 2.9%/256.6% 3.70 ± 4.58 0.0%/122.8%
200 1898 1017 72.95 ± 110.98 4.20 ± 2.16 4.32 ± 8.24 2.7%/281.2% 4.20 ± 5.26 0.0%/143.5%
500 1222 590 110.79 ± 154.11 5.03 ± 2.26 5.14 ± 8.55 2.2%/277.6% 5.03 ± 5.78 0.0%/155.2%

1000 790 347 157.77 ± 204.45 5.68 ± 2.55 5.80 ± 10.94 2.1%/329.4% 5.68 ± 7.46 0.0%/192.9%
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assuming a circular grain shape, the equivalent grain diam-
eter is given by:

D2D ¼ 2

ffiffiffi
A
p

r
ð22Þ

Although these methods produce consistent results for a
range of materials, the calculated grain size values do not
correlate well with results obtained from 3-D datasets
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based on the gamma curve fit.
[32,34]. As a result, the grain diameters estimated from
the 2-D datasets are generally undersized, requiring a cor-
rection factor to equate them to 3-D grain statistics. All
digital microstructures used in this study contain voxellat-
ed structures. Based on a voxel size of 0.25 lm �
0.25 lm � 0.25 lm, the volume of each voxel is
0.015625 lm3. By multiplying the number of voxels in each
grain by the voxel volume (V), a distribution of grain
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Fig. 8. Pole figure plots of initial microstructure illustrating the uniform random texture of the IN100 material.
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volumes can be tabulated. The grain volumes are converted
to equivalent sphere diameters for each grain in the dataset
according to:

D3D ¼
ffiffiffiffiffiffi
6V
p

3

r
ð23Þ

Fig. 5 presents plots of the grain size distribution of the ini-
tial microstructure based on Eq. 23 for the reconstructed
subsolvus IN100 material using MATLAB [35], consisting
of three separate distributions overlaid onto a single plot.
The histogram, highlighted in gray, was binned according
to Scott’s rule [36]. The average grain size was determined
to be 3.64 lm with a standard deviation of ±1.73 lm. The
red1 and blue distributions in Fig. 5 represent fits to the
grain size distribution based on the log-normal and gamma
functions, respectively.

4. Results

4.1. PFM simulations for grain growth

To simulate grain growth in the IN100 material, the
PFM must be properly calibrated. Spatial calibration was
performed by first inputting the 3-D reconstructed dataset
from Groeber [31] into the PFM. The process was simpli-
fied due to the fact that both the PFM and IN100 datasets
share a voxel-based structure. Each voxel from the recon-
structed microstructure with its associated x,y,z-coordi-
nates is directly assigned to the uniform Cartesian
coordinate system representing the phase-field mesh. Next,
each grain region in the dataset is assigned a unique order
parameter value based on the grain assignment and corre-
sponding orientation in the first step. Hence, the 3165 order
parameters directly correlate to the 3165 grains found in
the reconstructed microstructure. The final step consists
of assigning an g value of 1 to each voxel in the dataset,
thereby completing the spatial calibration.

Once the PFM was calibrated, it was incremented
through 1000 time steps to simulate grain growth of the
IN100 material. Time step calibration was not undertaken
1 For interpretation of color in Figs. 1, 3–13, A1 and A2, the reader is
referred to the web version of this article.
in this work, and hence the simulation time does not corre-
spond to physical time; however, 1000 time steps are suffi-
cient to evolve grain growth to the desired final level.
Results from the analysis were recorded at 100, 200, 500
and 1000 time steps and are shown in Fig. 6 along with
the initial dataset at t = 0. Through the course of the sim-
ulation, the number of grains was successively reduced
from 3165 to 2463, 1898, 1222 and 790 grains, respectively,
at the specified number of time steps.

Grain size statistics were calculated at increments of 0,
100, 200, 500 and 1000 time steps. The full 97 � 36
� 47 lm3 volume was sampled and only interior grains
were included to ensure statistical reliability (no effects of
periodic surfaces). Grain volume and equivalent sphere
diameter calculations were determined from Eq. (23). The
statistics are summarized in Table 3, indicating that the
average grain size increased from 3.64 lm for the starting
dataset to 5.68 lm for the final dataset.

Fig. 7 (top) shows a histogram of the grain size distribu-
tion for the 1000 increment dataset. Similar to Fig. 5 in
Section 4.1, two additional functions are plotted, the red
curve representing a log-normal distribution fit and the
blue curve a gamma distribution fit to the experimental
data. Traditionally, the log-normal distribution has been
used to statistically represent grain size measurements.
Vaz and Fortez [37] suggested that the gamma distribution
better captures the grain size distribution for recrystallized
microstructures. Kong et al. [34] concluded that the gamma
distribution better fits the size distribution of a set of spher-
ical particles in a two-phase composite. Moreover, Wang
et al. [38] reported that the gamma distribution offered a
better statistical fit to a set of 3-D microstructures obtained
through Monte Carlo and PFM. In the case of the 3-D
phase-field data presented here, the gamma function offers
an improved statistical fit to the measured data. The values
of equivalent sphere diameter for each of the five datasets
are listed in Table 3. For each of the datasets, the gamma
distribution exactly matched the average grain size,
whereas the log-normal distribution deviated by up to
2%. In addition, the standard deviation values for the
gamma distribution were much closer to the experimental
data than those of the log-normal fit distribution.

As expected for the grain growth simulation, the results
in Table 3 demonstrate a reduction in the number of grains



20x20x20 µm3
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Fig. 9. Size comparison of FEM input files for selected SVEs (initial microstructure shown).

Table 4
Comparison of FEM input files.

Dataset size (lm3) Mesh size Number of elements Degrees of freedom Number of grains in SVE

0 Steps 500 Steps 1000 Steps

5 � 5 � 5 21 � 21 � 21 10,649 31,947 9 5 4
10 � 10 � 10 41 � 41 � 41 68,921 222,267 45 22 13
15 � 15 � 15 61 � 61 � 61 226,981 714,987 108 45 30
20 � 20 � 20 81 � 81 � 81 531,441 1654,107 246 108 69
35 � 35 � 35 141 � 141 � 141 2863,289 8589,867 910 386 246
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as the analysis proceeds, with a simultaneous increase in
average grain size and standard deviation. Fig. 7 (bottom)
offers a visual confirmation of this change in grain size dis-
tribution for the 0, 100, 200, 500 and 1000 time step data-
sets. For each incremental dataset, the height of the
distribution declines due to a decrease in volume fraction
of grains, while the width of the distribution increases
due to a larger variation of grain sizes within the statistics.
It is interesting that the probability of occurrence of large
grains of size 10–15 lm increases by more than an order
of magnitude during coarsening. This has important impli-
cations for minimum fatigue life, for example, as demon-
strated in the work of Przybyla and McDowell on IN100
[20].

Pole figures in Fig. 8 represent the initial crystallo-
graphic texture of the IN100 datasets as calculated with
MTEX [39]. The plot shows that the IN100 material has
a uniform random texture with peak intensities of 2.2�,
1.6� and 1.9� random in the {100}, {110} and {111}
directions, respectively. Pole figures for the datasets
recorded at 100, 200, 500 and 1000 time steps are not
shown here due to negligible changes in texture. A small
increase in peak intensity to 3.5�, 2.2� and 2.7� random
were recorded for the {100}, {110} and {111} directions,
respectively, for the dataset annealed to 1000 time steps.
Such results are, of course, significantly affected by the
assumption of isotropic grain boundary mobility and
energy in the present work. In reality, the grain boundary
distribution exhibits a substantial range of energy and
mobility.
4.2. Finite-element modeling

A methodology was developed to link voxellated 3-D
datasets, whether experimentally obtained (EBSD) or syn-
thetically generated (PFM), to the microstructure-sensitive
finite-element model introduced in Section 2.2. Because
voxellated structures can be readily converted to hexahe-
dral meshes, reduced integration C3D8R [28] elements with
random periodic boundary conditions [40–43] were utilized
for the finite-element simulations. As illustrated in Fig. 1,
this linkage between the phase-field and finite-element
models has two-way character. Changes in material param-
eters resulting from the finite-element simulation, such as
texture evolution with imposed deformation and disloca-
tion density increase, can in principle be conveyed back
to the phase-field model. This can assist modeling of
strain-induced recrystallization, for example. However, this
is not undertaken in the current work which focuses on
one-way use of PFM to provide input to FEM simulation
of stress–strain behavior of successively coarsened grain
structures, neglecting coarsening of the finer-scale precipi-
tate structures and the influence of cold work on the driv-
ing force for coarsening.

The complete IN100 dataset contains approximately
10.5 million voxels and is too large to use in finite-element
simulations. Therefore, a set of smaller subvolumes, so-
called statistical volume elements (SVEs), were employed
to construct a statistical ensemble of stress–strain simula-
tions, as shown in Fig. 9. The SVEs ranged in size from
5 � 5 � 5 lm3 to 35 � 35 � 35 lm3, corresponding to a



Fig. 10. 3-D contour plots representing the S22 stress component (top) and accumulated plastic strain (bottom) for the 15 � 15 � 15 lm3 SVE at
increments (from left to right) of 0.5%, 3.5%, 6.5% and 9.5% true strain, respectively.
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mesh size (i.e. number of elements along each edge of the
SVE) ranging between 21 � 21 � 21 and 141 � 141 � 141.
The number of elements in each SVE varied from 10,649
to 2863,289. Meshes were created for three of the five
phase-field datasets, namely the outputs at 0, 500 and
1000 time increments. A complete listing of mesh charac-
teristics, including the number of grains contained in each
SVE, appears in Table 4.

A comprehensive listing of input variables for the micro-
structure-sensitive crystal plasticity model can be found in
Ref. [20]. Parameter values of b ¼ 0 and Cv ¼ 10:96 MPa
were used in lieu of the values reported in Ref. [20] because
they depend on precipitate distributions that differ from
those used in the previous study. All other parameters
remained constant for each of the FEM simulations except
for average grain size. Mean grain size values of 3.64 lm
(ASTM 13.2), 5.03 lm (ASTM 12.3) and 5.68 lm (ASTM
Fig. 11. Averaged experimentally obtained true stress–strain curves at
621 �C (blue curve) and 704 �C (red curve). The black curve represents the
interpolation stress–strain curve at 650 �C. A strain rate of 8.33 � 10�5 s�1

was used for all experiments.
12.0) were used for the datasets recorded at 0, 500 and
1000 time steps, respectively. Crystallographic texture data,
defined by a set of three Euler angles, were obtained exper-
imentally from EBSD measurements but are not tabulated
due to space limitations. The values of precipitate volume
fraction and mean size for each population of precipitates
reported in Section 3 were held constant between datasets
even though realistic grain growth experiments would
result in variation of these parameters. This limitation
could be addressed by the development of a more complex
two-phase grain growth model that explicitly addresses
both grain growth and precipitate coarsening.

The large numbers of elements in the IN100 meshes
necessitates a substantial amount of memory for solutions.
Additionally, the computationally intense nature of the
finite-element simulations results in lengthy run times. To
offset these limitations, the IN100 ABAQUS UMAT [28],
written as a FORTRAN subroutine, was modified and
Fig. 12. Comparison of IN100 experimental true stress–strain results to
simulations and the impact of SVE size on the solution.



Fig. 13. Simulated stress–strain response for 0, 500 and 1000 time step
datasets, representing grain size effects for coarsened microstructures.
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ported to run within a high-performance computing envi-
ronment. Both MPI-based and thread-based paralleliza-
tions were utilized. The NSF TeraGrid high-performance
computing network was employed for all finite-element
computations. Utilizing 64 cores, a speed-up value near
28 was achieved by utilizing sufficient compute nodes to
ensure the simulation ran within system memory and
avoided unnecessary internodal communication. The
results indicate that simulation time scales as the square
root of the degrees of freedom within the system. The inter-
ested reader can find a more detailed discussion of bench-
mark results in the Appendix.

4.3. FEM results

Fig. 10 presents 3-D stress–strain plots from simulations
for uniaxial tension of subsolvus IN100 at 650 �C
(1200 �F). The contour plots illustrate the evolution of
stress and strain in the microstructure as the simulation
progresses. The top row of plots represents the S22 Cauchy
stress component and the bottom row represents the von
Mises accumulated plastic strain within the applied strain
window of 0.5–9.5%. Similar plots can be employed not
only to visualize mechanical response but to find localized
regions within the microstructure with high levels of stress
or strain. For example, regions with elevated values of
accumulated plastic strain can be analyzed using fatigue
indicator parameters [20,44,45] to quantify microstructure
sensitivity of the driving force to form and grow small fati-
gue cracks [20].

Experimental stress–strain curves from Milligan [46] are
considered in this work. The data consist of three stress–
strain curves at 621 �C (1150 �F) and five curves at
704 �C (1300 �F) recorded at a strain rate of
8.33 � 10�5 s�1, relevant to the response of the initial
microstructure of the present study. After averaging the
three stress–strain plots at 621 �C separately from the five
stress–strain curves at 704 �C, an interpolated stress–strain
curve at 650 �C was calculated from the two averaged
curves, as shown in Fig. 11. At true strain values less than
5%, there is little difference between the experimental
stress–strain curves recorded at 621 and 704 �C. Above
5% true strain, the true stress values for the 704 �C curve
begin to diverge lower than for the 621 �C curve. Although
the temperature dependence of flow stress is not linear due
to thermal activation, the interpolated 650 �C curve is con-
sidered reasonable owing to the weak temperature depen-
dence of the initial yield strength within this window of
temperature, as illustrated by the black curve in Fig. 11.
Based on the 0.2% offset criterion, the interpolated curve
has a yield strength value of 1060 MPa.

Fig. 12 contains true stress–strain responses for the ini-
tial microstructure from the microstructure-sensitive finite-
element simulation, with the red, blue and green curves cor-
responding to the 5 � 5 � 5 lm3, 10 � 10 � 10 lm3 and
15 � 15 � 15 lm3 SVEs, respectively. The black curve rep-
resents the interpolated experimentally based stress–strain
curve from Fig. 11. Values of yield strength were 1089,
1072 and 1076 MPa for the three datasets, respectively.

In general, as the SVE size increases, the predicted val-
ues of mechanical response should converge to the experi-
mental values corresponding to a statistically
representative volume. Unfortunately, SVE sizes larger
than 15 � 15 � 15 lm3 were too large to simulate due to
practical limitations of available memory and runtime. A
parametric study would be necessary to define a minimum
SVE size and the number of SVEs required to constitute a
representative volume element (RVE), but this is beyond
the scope of the present work.

Finally, the simulated effect of grain size on the mechan-
ical response of IN100 is plotted in Fig. 13. Based on an
SVE size of 10 � 10 � 10 lm3, FEM results are plotted
for each of the PFM datasets at 0, 500 and 1000 time steps.
It is not surprising that the flow stress decreases as grain
size increases since the grain size terms in Eqs. (12) and
(13) follow a Hall–Petch relationship. The dataset for the
initial microstructure (0 time step) had the highest yield
strength value of 1072 MPa, followed by values of 1024
and 1008 MPa for the 500 and 1000 increment datasets,
respectively.

5. Discussion

As part of this research, a phase-field model was linked
to a microstructure-sensitive finite-element model. A realis-
tic IN100 microstructure characterized using EBSD on
serial sections by Groeber et al. [31] was used to calibrate
the phase-field model. A single-phase grain growth simula-
tion was executed through 1000 time steps, resulting in a
reduction in number of grains during coarsening from
3165 to 790. FEM simulations conducted within a high-
performance computing environment scaled well to 64
cores and achieved maximum speed-up rates of nearly 28.
Simulation results for 650 �C showed good agreement with
experimentally obtained stress–strain data for the initial
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microstructure. A discussion of the limitations, approxima-
tions and suggestions for future research related to the
phase-field model, material characterization, and finite-ele-
ment model follows below.

The phase-field model utilized in this study was based on
a binary Ni–Al system. Augmentation of the model to
allow for additional alloy elements in the thermodynamic
calculations would improve applicability of the grain
growth results. Additionally, the current PFM does not
consider the effect of depleted zones on precipitate forma-
tion/growth or account for inclusion of hard phases within
the matrix or along grain boundaries that are known to
affect fatigue life and grain boundary mobility within Ni-
base superalloys. Recently, Chang et al. [15] utilized
PFM to study the ability of second-phase particles to inhi-
bit grain boundary migration. Although the model used in
this research was calibrated spatially from an experimen-
tally characterized microstructure, the issue of time calibra-
tion to better correlate the model to known process path
histories needs to be addressed. Lastly, development of a
two-phase grain growth model (c�c0) to enable the simul-
taneous coarsening of both c0 precipitates and grains is
warranted.

Experimental characterization of the IN100 microstruc-
ture is critical to the calibration of both the phase-field and
finite-element models, serving as the basis for the realistic
grain structures presented here. A limitation of the existing
IN100 dataset is the absence of twin boundaries within the
reconstructed microstructure. Because the subsolvus IN100
twins were similar in width to the scan resolution, they
could not be properly recovered and were thus removed
from the dataset [31]. However, twin boundaries are known
to affect the mechanical properties of metals as they effec-
tively reduce the grain size of the structure and provide bar-
riers for dislocation migration, thus influencing the fatigue
response of the material. Utilizing higher-resolution EBSD
scans would allow for more accurate recovery and recon-
struction of the twin boundaries.

The FEM approach does not fully address the role of
grain boundary structure on dislocation slip transfer
between grains. Rohrer et al. [47,48] have devoted signifi-
cant efforts to reconstructing grain boundary networks
from 3-D EBSD datasets and calculating the associated
distribution of grain boundary character and grain bound-
ary energy within the microstructure, which can provide
valuable input into PFM simulations and enhanced FEM
simulations that employ constitutive equations for slip
transfer at grain boundaries.

Wilkinson and colleagues [49] have described a method
to accurately determine the full elastic strain tensor from
EBSD scan data. This elastic strain tensor is beneficial
for both calibrating and verifying finite element models.
Adams et al. [50,51] augmented the technique by generat-
ing synthetic strain-free electron backscatter patterns for
purposes of cross-correlation and estimated values of lat-
tice curvature and dislocation density in addition to elastic
strain. Generating 3-D maps of dislocation density for a
given EBSD dataset would improve the accuracy of FEM
results since the simulation could be calibrated to experi-
ments with regard to dislocation density evolution.

Microstructure-sensitive FEM requires continued
research in several areas. Recently, McDowell [52] dis-
cussed key challenges for future progress, including: mod-
eling over multiple length scales, statistical behavior of
dislocations and formation of subgrains, multiscale kine-
matics, treatment of grain boundaries, and a discussion
of top-down vs. bottom-up modeling schemes. He further
elaborated on the need to advance discrete dislocation
and crystal plasticity theory within the context of concur-
rent and hierarchical multiscale modeling strategies [53].
Several areas that may impact future FEM development
are as follows:

(i) The concept of minimum SVE size and number of
SVEs required to simulate an RVE requires further
development. As argued by Fullwood et al. [54], the
ergodic assumption must be invoked when using an
ensemble of SVEs to fit an RVE. This requires that
the statistical average of the desired property within
the SVEs must be equivalent to the statistics for the
RVE. The goal in selecting an SVE size is to minimize
the average error and standard deviation between the
chosen set of SVEs and the RVE, and simultaneously
to minimize SVE size. Unfortunately, these two fac-
tors are in direct competition since the SVE size must
be increased in order to reduce error. Utilizing two-
point statistics, Niezgoda and coworkers [55] illus-
trated a procedure to determine the appropriate
SVE size for both a two-phase composite and a poly-
crystalline metal. McDowell et al. [56] have elabo-
rated on the use of a statistically equivalent RVE
(SERVE) for general problems without phase rear-
rangement/damage and RVE sets for more complex
problems that include evolution of damage within
the microstructure.

(ii) Recent work by Przybyla and McDowell [20] con-
cluded that as few as 25 SVEs were sufficient to fit
an extreme value distribution of the Fatemi–Socie
fatigue indicator parameter at 97% confidence utiliz-
ing a 28 � 28 � 28 element mesh containing 77
grains. Further, they concluded that the primary zone
of influence on any given grain extended to the two
nearest neighbors of the grain, assuming periodic
boundary conditions are imposed in the simulation.
Additionally, it was observed that the extreme value
fatigue indicator parameter did not vary substantially
for edges with 12 or more elements along the edge.
Based on these conclusions, an SVE volume size con-
taining 20–30 elements and 5 grains per edge should
be sufficient to conduct a parametric study for the
research presented here. From Table 4, this corre-
sponds to an intermediate SVE size between
10 � 10 � 10 lm3 and 15 � 15 � 15 lm3 to ensure a
sufficient number of grains, but a SVE size between
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5 � 5 � 5 lm3 and 10 � 10 � 10 lm3 to satisfy mesh
density requirements. As a result, additional work
to coarsen the mesh density is needed in addition to
the parametric study to define minimum SVE size
and number of SVEs required to constitute an RVE
response.

(iii) The existing finite-element model employs voxellated
meshes to represent grain boundaries. In contrast to
real microstructures, voxellated grain edges are jag-
ged by nature. Future work to compare smooth
boundary meshes to the voxellated meshes might be
warranted if advances are made in constitutive mod-
els for grain boundary slip transfer. Both phase-field
and finite-element models would perhaps benefit
from multiscale approaches that permit explicit con-
sideration of the precipitates, depending on the goals
and purpose of the simulations.

(iv) Methods to reduce computation time are of great
practical relevance. In addition to the parallel com-
puting approach adopted in this work, another
approach to reduce simulation time is to reduce the
mesh density of the simulation volume. Lewis and
Geltmacher [57] pursued this route by coarsening a
voxellated mesh by sampling every fourth pixel in
the x–y plane of the dataset but retaining each of
the sections in the z-direction. The result was signifi-
cantly reduced computation time with some loss in
grain boundary fidelity. A more advanced technique
would be to apply a similar procedure within the
3-D grain structure by coarsening the mesh at the
interior of the grains but preserving a more refined
structured mesh near grain boundary interfaces.
Lastly, statistical continuum mechanics can be devel-
oped to replace traditional FEM methodologies. For
example, Garmestani et al. [58] utilized two-point sta-
tistics to simulate the mechanical response and tex-
ture evolution of an fcc polycrystal subjected to
large plastic deformation. Conditions of compatibil-
ity and stress equilibrium within the model were sat-
isfied by numerically computing a Green’s function
solution for the set of partial differential equations.
More recently, Ahmadi et al. [59] described a double
continuity model that accurately modeled the evolu-
tion of pair correlation statistics under large plastic
strain; in this work, an Eulerian-based model that
employed a finite-difference method was developed
to satisfy conservation of both mass and orientation.
Finally, Kalidindi and coworkers [60–62] have for-
mulated a type of statistical continuum approach
termed “Materials Knowledge System” (MKS) to
facilitate the bidirectional flow of process–structure–
property correlations over multiple length scales.
The technique utilizes influence functions calibrated
from FEM simulations to link the localized material
response to the macroscopic response over a wide
range of applied conditions. The main advantage of
these statistical correlation-based approaches over
traditional FEM methods is a significant reduction
in computation time with certain simplifying
assumptions.

6. Conclusions

The objective of this work has been to introduce a meth-
odology whereby phase-field and finite-element models can
be one-way coupled (from phase field to finite element) to
enable predictive process–structure–property relations. A
3-D digital microstructure recovered through OIM pro-
vided a realistic grain structure necessary for calibration
of the models. Experimental procedures for determining
grain size distribution were described and a comparison
made between the log-normal and gamma distributions.
The methodology was demonstrated for a subsolvus
IN100 Ni-based superalloy. Results for both grain growth
and microstructure-sensitive finite-element simulations
were presented and ideas for future research were detailed.
The following conclusions and observations can be drawn
from the study:

	 The present work required only a one-way coupling to
predict the mechanical response of IN100. However, in
order to establish top-down material design methods,
future work will need to establish a fully two-way
linkage.
	 Based on the research results, EBSD is a useful charac-

terization technique to not only assist in reconstruction
of realistic 3-D microstructures but to also spatially cal-
ibrate the phase-field and finite-element models. It is
noted that sequences of time-resolved EBSD datasets
recovered over a range of temperatures are necessary
to fully calibrate phase-field predictions of evolving
microstructure.
	 For the PFM simulations for grain growth in IN100, the

gamma distribution was found to better represent the
grain size distribution than the traditional log-normal
distribution.
	 The simulation time of the finite-element model scales as

the square root of the number of degrees of freedom for
both single and multicore computing environments.



Table A1
Impact of model size on simulation time.

Dataset size
(lm3)

Number of
elements

Degrees of
freedom

Iterations
(6% strain)

Number
of cores

Variables
per core

Memory per
node (GB)

Iteration
time (min)

Simulation
time (hours)

Simulation
time (days)

Speed-
up

5 � 5 � 5 10,649 31,947 3114 1 31,947 0.76 0.50 26.08 1.09 1.00
4 7987 0.76 0.13 6.89 0.29 3.79
8 3993 0.76 0.08 4.36 0.18 5.99

16 1997 0.54 0.06 3.20 0.13 8.14
32 998 0.43 0.05 2.43 0.10 10.71
64 499 0.32 0.03 1.79 0.07 14.54

10 � 10 � 10 68,921 222,267 4730 1 222,267 11.12 25.41 2002.89 83.45 1.00
4 55,567 11.12 5.17 407.83 16.99 4.91
8 27,783 11.12 2.95 232.30 9.68 8.62

16 13,892 7.97 1.92 151.62 6.32 13.21
32 6946 7.16 1.38 108.79 4.53 18.41
64 3473 5.89 0.92 72.26 3.01 27.72

15 � 15 � 15 226,981 714,987 7185 1 714,987 55.07 238.50 28,558.86 1189.95 1.00
4 178,747 55.07 152.22 18,226.98 759.46 1.57
8 89,373 55.07 139.62 16,718.21 696.59 1.71

16 44,687 40.40 31.42 3761.95 156.75 7.59
32 22,343 38.37 22.45 2688.24 112.01 10.62
64 11,172 31.14 13.23 1584.61 66.03 18.02

Fig. A2. Simulation time vs. degrees of freedom, illustrating a power-law
relationship between variables.
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	 When scaling the FEM simulations over multiple nodes,
speed-up can be maximized by choosing the appropriate
number of nodes to ensure the simulation runs within
available system memory and to avoid inefficiencies
due to excessive internodal communication.
	 The microstructure-sensitive FEM captures the mea-

sured stressstrain response of subsolvus IN100 at
650 �C reasonably well.
	 Future research is needed to better define the minimum

number of simulations to build up representative statis-
tics and the minimum allowable statistical volume ele-
ment size.
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Appendix A. Benchmark results

Benchmark results plotted in Fig. A1 and Table A1 were
obtained with ABAQUS [28] utilizing the direct solver.
They are plotted for a distributed memory cluster consist-
ing of Dell PowerEdge 1955 blades configured with dual
socket Intel 64-bit 2.33 GHz processors. Each node con-
tains 8 cores, 16 GB memory, and utilizes InfiniBand inter-
connects and a Lustre filesystem. The simulations scaled
well to 64 cores on both distributed and shared memory
systems.

Speed-up is a useful metric to measure the efficacy of uti-
lizing additional processor cores during a finite-element
simulation. It can be calculated by dividing the time
required to run the simulation with only a single core by
the time required to run the same simulation using multiple
cores. The 10 � 10 � 10 lm3 dataset (red line) in Fig. A1
exhibited the highest speed-up value of 27.72 when paired
with 64 cores. Speed-up values of 14.54� and 18.02� were
reported for the 5 � 5 � 5 lm3 (blue line) and 15 � 15 �
15 lm3 (green plot) datasets, respectively. Close examina-
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tion of the model size and memory requirements per node
in Table A1 helps to explain the results. The amount of sys-
tem memory available becomes crucial as the model size
increases. Both the 5 � 5 � 5 lm3 and 10 � 10 � 10 lm3

models required less than 12 GB of memory and therefore
ran within system memory. The 15 � 15 � 15 lm3 simula-
tion, on the other hand, was too large to fit into system
memory and thus suffered from inefficient read/write oper-
ations. This is evident in Fig. A1, with speed-up times being
minimal until scaled over multiple nodes. With 4 nodes (32
cores), the 15 � 15 � 15 lm3 and 5 � 5 � 5 lm3 SVEs have
equivalent speed-up rates and even with 8 nodes (64 cores),
the 15 � 15 � 15 lm3 dataset requires 31.14 GB of memory
to run within memory.

Mesh size can also impact simulation performance. For
example, the 21 � 21 � 21 mesh (5 � 5 � 5 lm3) did not
scale as well as the 41 � 41 � 41 mesh (10 �
10 � 10 lm3), even though system memory requirements
were lower. This can be explained by inefficiencies in the
process. For example, when run over 8 nodes (64 cores),
the iteration time for the 5 � 5 � 5 lm3 dataset was only
2 s. This high rate of simulation time resulted in a larger
portion of time being spent in internodal communication
as opposed to computation. As a result, the overall effi-
ciency and speed-up ratios of the simulation declined.

Fig. A2 represents a plot of simulation time vs. degrees
of freedom on a log–log scale for 1, 4, 8, 16, 32 and 64
cores. The linear nature of the plots suggests a power-law
relationship between simulation time and degrees of free-
dom. This trend can be explained by considering the proce-
dure ABAQUS uses to solve equilibrium equations.
ABAQUS employs Newton’s method as a numerical tech-
nique for solving non-linear equilibrium equations [28].
Although the Newton–Raphson method is reliable and
exhibits quadratic convergence, it is often avoided for large
finite-element models. This is due to the fact that the
expense of forming and solving the complete Jacobian
matrix becomes greater as the model size increases [28].
Additionally, the process of forming and solving the Jaco-
bian matrix must be repeated at each iteration step of the
analysis. Thus, the power-law relationship between the
degrees of freedom and the simulation time can be under-
stood in the context of the nonlinear scaling displayed by
ABAQUS when forming and solving the Jacobian matrix.
Consequently, the simulation time scales as the square root
of the degrees of freedom in the simulation, as illustrated in
Fig. A2.
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