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Strong coupling among external voltage, electrochemical potentials, concentrations of electronic and ionic
species, and strains is a ubiquitous feature of solid state mixed ionic-electronic conductors (MIECs), the materials
of choice in devices ranging from electroresistive and memristive elements to ion batteries and fuel cells. Here,
we analyze in detail the electromechanical coupling mechanisms and derive generalized bias-concentration-strain
equations for MIECs including contributions of concentration-driven chemical expansion, deformation potential,
and flexoelectric effect. This analysis is extended toward the bias-induced strains in the uniform and scanning-
probe-microscopy-like geometries. Notably, the contribution of the electron-phonon and flexoelectric coupling to
the local surface displacement of the mixed ionic-electronic conductor caused by the electric field scanning probe
microscope tip has not been considered previously. The developed thermodynamic approach allows evolving the
theoretical description of mechanical phenomena induced by the electric fields (electromechanical response) in
solid state ionics toward analytical theory and phase-field modeling of the MIECs in different geometries and
under varying electrical, chemical, and mechanical boundary conditions.
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I. INTRODUCTION

Development of strains is a phenomenon ubiquitous in
solid-state electrochemical devices including batteries,1,2 fuel
cells3,4 and electroresistive and memristive electronics. For
example, strain is one of the dominant factors contributing
to the mechanical instability of solid oxide fuel cells and
Li-ion battery anodes such as intraparticle cracking and
delamination of electrodes.5,6 The difference in boundary
conditions (clamped or unclamped material) can significantly
shift the electrochemical potentials of reacting species and
electrons7 and affect charge-discharge hysteresis and hence
efficiency of materials and devices. On the other hand,
electrochemically generated strains can be utilized to build
electromechanical devices such as artificial muscles8 and
actuators,9 or diagnostic tools for electrochemical systems
at both the macroscopic10 and nanometer scales.11 Electro-
chemical strain microscopy11,12 uses the periodic nanoscale
electrochemical strains generated by a biased scanning probe
of microscope to detect Li-ion diffusion in cathode13 and
anode materials14 at the 10–100 nm scale. Based on the
previous imaging and spectroscopy results in ferroelectric
materials,15–17 it is possible to perform electrochemical strain
microscopy measurements at the level of several nanometers,
opening the pathway for probing structure-electrochemical
property relationships at a single structural defect.

A common source for strain in electrochemically ac-
tive materials is the compositional dependence of lattice
parameters, as discussed in detail by Larche and Cahn.18

This is the case for many ionic and mixed ionic-electronic
conductors such as ceria,19 cobaltites,20–23 nikelates,24 and

manganites.25 Similarly, insertion and extraction of Li ions
in Li-battery electrodes produce large volume changes.26,27

Most of the previous theoretical studies of strain effects
in diffusional28,29 and electrochemical systems consider this
compositional lattice expansion as the only source of strain.
This assumption is reasonable if the electronic conductivity of
a material is sufficiently high to avoid significant potential
drops (equivalent to the presence of support electrolyte
in liquid electrochemistry30,31), obviating electromigration
transport and providing local electroneutrality.

However, the situation can differ significantly for the case
of materials with finite electronic conductivity, in which both
concentration fields and electrostatic field are nonuniform
within the material. Electrostatic fields in the material give
rise to strains due to electrostriction32–35 and space-charge36

effects. Second, the changes in the redox state of Jahn-Teller-
(JT-)active cations can give rise to additional strain coupling
mechanisms through the deformation potential.37–42 As an
example, in perovskites these effects can be understood as
a consequence of the changes in favored oxygen octahedral
geometry as a function of oxidation state of the central cation.
Similarly to the fact that change in the d-orbital population
changes octahedral shape and gives rise to the JT effect,
the strain-deforming octahedron will shift the electrochemical
potential of the central atom. These effects will be particularly
pronounced on the nanometer scale as relevant to scanning
probe microscopy imaging43 and nanoparticle/nanowire mate-
rials, in which the conditions of local electroneutrality are
violated on the length scales of corresponding screening
lengths and large (compared to macroscopic systems) strains
can be supported.
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Inhomogeneous electric fields, which are inevitably present
in systems with inhomogeneous space charge (e.g., in the
vicinity of the tip-surface junction), induce elastic strains
linearly proportional to the field gradient due to the flex-
oelectric coupling; vice versa, inhomogeneous elastic stress
causes electric polarization. The existence of such effects was
pointed out by Mashkevich and Tolpygo44 and Kogan.45 A
comprehensive theory of the flexoelectric effect was offered
by Tagantsev,46–48 experimental measurements of flexoelectric
tensor components in bulk crystals were carried out for
perovskites by Ma and Cross49–53 and Zubko et al.54 Further
theoretical developments of the flexoelectric response of
different nanostructures were made by Catalan et al.55,56

Majdoub et al.,57 Kalinin and Meunier,58 Eliseev et al.,59 and
Sharma et al.60,61

In this paper, we develop the equilibrium strain-
concentration-bias equations for electrochemically active ma-
terials that account for chemical expansivity, deformation
potential, and flexoelectric effects. The relevant comparison
here is the Ginzburg-Landau-type theories for ferroelectric
materials that are broadly available for ferroelectrics and allow
domain structures,63 domain dynamics,62 behavior in nonuni-
form systems (e.g., strained films and multilayers63), and the
effects of individual and multiple defects to be explored.64

Once available for electrochemical systems, similar advances
based on phase-field-type models could be achieved.65–68

II. GENERALIZED CONCENTRATION-STRAIN-BIAS
CONSTITUTIVE RELATION

Here, we analyze the coupling between electrochemical
potential and strain in mixed ionic-electronic conductors
(MIECs). We consider the flexoelectric effect, deformation po-
tential, quasi-Fermi-level shift by electron-phonon coupling,
and Vegard expansion of the lattice caused by mobile donors
(and/or acceptors) as the primary contributing mechanisms.

A. Flexoelectric effect contribution to electrostatic potential
and elastic stress

For centrosymmetric crystals (considered hereinafter) the
direct flexoelectric effect gives the equation of state for
dielectric polarization Pi(r):46,47

Pi = γklij

∂ukl

∂xj

+ ε0χijEj , (1)

which includes the “flexoelectric” polarization γijkl∂ujk/∂xl

induced by the inhomogeneous strain uij (r) gradient
∂uij /∂xl ,47,53,54 and dielectric response ε0(εij − δij )Ej , where
ε0 is the universal vacuum dielectric constant, χij = (εij − δij )
is the lattice susceptibility tensor, εij is the lattice permittivity
tensor, and Ei is the electric field. The flexoelectric strain
tensor γijkl has been measured experimentally for several
substances and it was found to vary by several orders of
magnitude from 10−11 to 10−6 C/m.69 Hereafter we use the
Einstein summation convention for all repeating indices.

Direct substitution of the polarization (1) into the Maxwell
equation div(P + ε0E) = ρf along with the definition Ek(r) =

−∂ϕ(r)/∂xk leads to the Poisson-type equation with a flexo-
electric term for the electric potential ϕ(r) of the MIEC:

ε0εij

∂2φ(r)

∂xi∂xj

= −q[p(r) − nC(r) − N−
a (r) + N+

d (r)]

+ γijkl

∂2uij (r)

∂xk∂xl

. (2)

Here q is the absolute value of the electron charge, nC(r) is
the concentration of electrons in the conduction band, p(r)
is the concentration of holes in the valence band, N+

d (r) is
the concentration of mobile ionized donors, and N−

a (r) is the
concentration of mobile ionized acceptors in the MIEC.

The converse flexoelectric effect contributes to Hooke’s law
relating the strain ukl(r) and stress tensor σkl(r):70

σij (r) = cijklukl(r) + fijkl

∂Pk(r)

∂xl

. (3a)

Here cijkl is the tensor of elastic stiffness and the flexoelectric
stress tensor fijkl = γijmkχ

−1
ml /ε0. Hereafter we neglect the

quadratic contribution of the flexoelectric effect and using
Eq. (1) rewrite Eq. (3a) as71

σij (r) = cijklukl(r) + γijmk

∂Ek(r)

∂xm

. (3b)

The substitution of the polarization from Eq. (1) into
Eq. (3b) leads to the relations

σij (r) = cijklukl(r) − γijkl

∂2ϕ(r)

∂xk∂xl

, (4a)

uij (r) = sijklσkl(r) + sijmnγmnkl

∂2ϕ(r)

∂xk∂xl

, (4b)

where γijkl∂
2ϕ(r)/∂xk∂xl is the linear contribution of the flex-

oelectric effect, and sijkl is the tensor of elastic compliances.

B. Vegard expansion of the lattice caused by mobile
donors and acceptors

The effect of the stoichiometry on the local strain is
the linear dependence of lattice constants on the chemical
composition of the solid solution (Vegard law of chemical
expansion18,72). In accordance with the Vegard law the local
stress σij and strains uij produced by the mobile ion (donors
or acceptors) migration and diffusion are related as1,29

σij = cijklukl(r) − βd
ij [N+

d (r) − N+
d0] − βa

ij [N−
a (r) − N−

a0],

(5a)

uij = sijklσkl(r) + β̃d
ij [N+

d (r) − N+
d0] + β̃a

ij [N−
a (r) − N−

a0],

(5b)

where N+
d (r) is the instant concentration of mobile ionized

donors, N−
a (r) is the instant concentration of mobile ionized

acceptors, N+
d0 and N−

a0 are their stoichiometric equilibrium
concentrations, and β

a,d
ij and β̃

a,d
ij = sijklβ

a,d
kl are the Vegard

expansion tensors for acceptors (donors).
The structure of the Vegard expansion tensor is controlled

by the symmetry (crystalline or Curie group symmetry) of the
material; for isotropic or cubic media it is diagonal and reduces
to a scalar β

a,d
jk = βa,dδjk (hereafter δjk is the Kronecker delta
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symbol). Experimental methods for βij determination are rel-
atively well established. For instance, one could either directly
study the strain of a given sample with the changes of stoi-
chiometry (see, e.g., Refs. 23–25 ) or consider the set of several
samples with slightly different compositions (solid solution).

Note that the Vegard strain caused by mobile donors
and acceptors leads to the shift of their chemical potential
levels proportional to the convolution βa

jkujk(r) or β̃a
jkσjk(r)

(see, e.g., Ref. 1) and their equilibrium concentrations in the
Boltzmann-Planck-Nernst approximation:

N+
d (r) ≈ N+

d0 exp

(
βd

jkujk(r) − qϕ(r)

kBT

)
, (6a)

N−
a (r) ≈ N−

a0 exp

(
βa

jkujk(r) + qϕ(r)

kBT

)
, (6b)

where kB = 1.3807 × 10−23 J/K and T is the absolute
temperature.

Consequently, Eqs. (5) and (6) can be interpreted as the
direct and converse Vegard effects: the ion concentration
variation induces stress or strain (the direct Vegard effect),
or the strain or stress produces the concentration changes (the
converse Vegard effect).

C. Electron-phonon coupling contribution
in the elastic subsystem

In deformation potential theory,37–42 the strain-induced
conduction (valence) band edge shift is proportional to the
strain in the linear approximation, namely,

EC(uij (r)) = EC(0) + �C
ijuij (r),

(7)
EV (uij (r)) = EV (0) − �V

ijuij (r),

where EC and EV are the energetic positions of the bottom
of the conduction band and the top of the valence band,
respectively,73 and �

C,V
ij is the tensor deformation potential

of electrons in the conduction (C) and valence bands (V).40

The properties of the deformation potential tensor �
C,V
ij are

determined by the crystalline symmetry of the material and
the positions of the bottom of the conduction band and the top
of the valence band in the Brillouin zone.37–42

Neglecting the strain-induced changes in the density
of states (DOS) in the energy bands, one can express
the impact on the strain of the equilibrium concentra-
tion of the electrons in the conduction and holes in the
valence bands in terms of the introduced deformation
potential:74,75

nC(r) =
∫ ∞

−∞

[
1 + exp

(
ε + EC + �C

ijuij (r) − EF − qϕ(r)

kBT

)]−1

gC(ε) dε ≈ nC0 exp

(−�C
ijuij (r) + qϕ(r)

kBT

)
, (8a)

p(r) =
∫ ∞

−∞

[
1 + exp

(
−ε + EV − �V

ijuij (r) − EF − qϕ(r)

kBT

)]−1

gV (ε) dε ≈ p0 exp

(−�V
ijuij (r) − qϕ(r)

kBT

)
, (8b)

where kB = 1.3807 × 10−23 J/K, T is the absolute temperature,
EF is the Fermi level, and q is the absolute value of the electron
charge. The functions gm(x) with the subscript m = C,V are
the densities of states.76

Approximate equalities in Eq. (8) correspond to the
Boltzmann-Planck-Nernst approximation that is widely used
for MIECs (see, e.g., Riess et al.77–79). In this approximation,
in the absence of external potential and strains the equilibrium
concentrations of the electrons in the conduction band and
holes in the valence band, nC0 and p0, read

nC0 =
∫ ∞

−∞
dεgC(ε)exp

(−EC + EF − ε

kBT

)

and

p0 =
∫ ∞

−∞
dεgV (ε)exp

(
EV − EF + ε

kBT

)
,

respectively.
One readily shows that a converse effect to that discussed

above (i.e., the stress or strain produced by the carrier redis-
tribution), conditioned by the deformation potential, should
exist, namely,

σij (r) = cijklukl(r) + �C
ij [nC(r) − nC0] + �V

ij [p(r) − p0],

(9a)

uij (r) = sijklσkl(r) − �̃C
ij [nC(r) − nC0] − �̃V

ij [p(r) − p0],

(9b)

The deformation potential tensors in Eqs. (9a) and (9b) are
related as �̃

C,V
ij = sijkl�

C,V
kl .

Let us demonstrate the validity of Eq. (9a) for the electrons
in the conduction band, obeying the classical statistics. We start
from the expression for the free energy density of electrons in
the conduction band:74

F

V
= 1

V

∑
α

{fα[EC(uij ) + εα] + kBT (fα ln fα − fα)}.

(10a)

The summation In Eq. (10a) is performed over the many
states in the conduction band denoted by the summation index
α. Here

fα = exp

(
−EC(uij ) + εα − EF − qϕ

kBT

)
(10b)

is the probability of the occupation of the αth state in the
band by an electron, the summation is performed over the
conduction band, and V is the system volume. Alternatively,∑

α fα can be expressed in terms of the density of the electrons,
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nC , and the density of states NC in the conduction band:

nC = 1

V

∑
α

fα ≡ NC exp

(
−EC − EF − qϕ

kBT

)
, (10c)

Comparing (10b) and (10c) one immediately sees that

fα = nC

NC

exp

(
− εα

kBT

)
. (10d)

Using (10d) and (10c), the free energy density (10a) can be
expressed in terms of its independent variables uij ,nC , and T :

F

V
= nC

{
EC + kBT

[
ln

(
nC

NC

)
− 1

]}
. (10e)

By definition

σij = ∂

∂uij

(
F

V

)∣∣∣∣
T ,nC

= nC

(
∂

∂uij

EC(uij ) − kBT

NC

∂NC

∂uij

)

= nC�C
ij − nC

kBT

NC

∂NC

∂uij

≈ nC�C
ij . (11)

Thus, neglecting the strain dependence of the density of states
NC in Eq. (11), and keeping in mind that we are interested in the
strain difference between the initial state of the system and that
with a changed electron density, we arrive at the second term on
the right-hand side of Eq. (9a). The calculations for the stress
induced by the variation of the hole density are similar. The
impact of the last term, nC(kBT /NC)(∂NC/∂uij ), appeared
small for semiconductors, since the strain dependence of the
effective mass is typically much smaller than the band gap
dependence determined by the deformation potential (see, e.g.,
Ref. 80).

III. ELASTIC FIELDS: FLEXOELECTRIC, VEGARD,
AND ELECTRON-PHONON CONTRIBUTIONS

The total stress contains a flexoelectric contribution in
accordance with Eq. (4), a Vegard contribution in accordance
with Eq. (5), and an electron-phonon contribution in accor-
dance with Eq. (9). Thus, the strain and stress tensors are
related as

σij (r) = cijklukl(r) + {
�C

ij [nC(r) − nC0]

+�V
ij [p(r) − p0] − βa

ij [N−
a (r) − N−

a0] − βd
ij [N+

d (r)

−N+
d0]

} − γijkl

∂2ϕ

∂xk∂xl

. (12a)

The strain tensor can be expressed via the stress tensor (10)
as

uij (r) = sijklσkl(r)+{
β̃a

ij [N−
a (r) − N−

a0]

+ β̃d
ij [N+

d (r) − N+
d0] − �̃C

ij [nC(r) − nC0]

− �̃V
ij [p(r) − p0]

}+ γ̃ijkl

∂2ϕ(r)

∂xk∂xl

. (12b)

The inverse effect tensors and flexoelectric coefficients in
Eq. (11b) are introduced as

�̃
C,V
ij = sijkl�

C,V
kl , β̃

a,d
ij = sijklβ

a,d
kl , γ̃ijkl = sijmnγmnkl .

(13a)

Note that Eqs. (12) require the reference lattice determination.
The reference lattice is regarded as strain-free for the case of
zero electric potential, ϕ = 0, and therefore

nC(r) = nC0, p(r) = p0, N−
a (r) = N−

a0, N+
d (r) = N+

d0.

Considering the case of isotropic media, for which
�

C,V
ij = �C,V δij , β

a,d
ij = βa,dδij , and γijkl = γDδij δkl +

γS(δikδjl + δilδjk), in Voigt notation Eq. (13a) can be sim-
plified as

�̃
C,V
ij = �C,V (s11 + 2s12)δij , β̃

a,d
ij = βa,d (s11 + 2s12)δij ,

γ̃33 = γ̃22 = γ̃11 = s11γ11 + 2s12γ12, (13b)

γ̃12 = γ11s12 + γ12(s11 + s12), γ̃44 = γ44s44.

Note that the group of k at the � point in the Brillouin zone is
isomorphic to the point group of the lattice so the � point has
full crystal symmetry. The � point symmetry determines the
deformation potential tensor.40 Thus nondiagonal components
of the deformation potential tensor as well as of the Vegard
strain tensor are possible only for monoclinic and triclinic
symmetry materials (since these tensors are symmetric polar
ones, their symmetry properties are the same as for, e.g.,
dielectric susceptibility tensors; see, e.g., Ref. 81).

Estimation of the deformation potential tensor trace per-
formed in the Tomas-Fermi approximation37 yields the mag-
nitude of β ∼ 1 eV and β̃ ∼ 10−30 m3 for Li-containing
ionics.23,25,82 Unfortunately, the Tomas-Fermi approximation
can significantly underestimate the deformation tensor value
for many materials by up to an order of magnitude.37,73

Experimental values are not available, albeit they are probably
accessible for density-functional-type modeling. In compari-
son, for Si- or Ge-based semiconductors experimental values
are �̃ ∼ 5−10 eV and �̃ ∼ (1−5) × 10−30 m3.40,83 Using the
values and typical range of concentration variations, namely,
(a) 1% deviation from the stoichiometric concentration
1028 m−3 for ions which gives [N−

a (r) − N−
a0] ∼ 1026 m−3;

(b) 10%−100% deviation of electron and hole concentrations
in the the depletion/accumulation regions which is about
[p0 − p(r)] ∼ 1027m−3, we estimate that the contributions of
the Vegard effect β̃a

ij [N−
a (r) − N−

a0] and deformation potential
�̃V

ij [p0 − p(r)] in Eq. (11) are comparable for ionics.

IV. THE STRAIN-VOLTAGE RESPONSE IN THE
DECOUPLING APPROXIMATION

Here, we illustrate the contribution of ion and electron
migration in the applied electric field to the strain response
of the MIEC surface. It is seen from Eqs. (12) that the Vegard
expansion, deformation potential, and flexoelectric effect
couple the stress field with the carrier distribution, requiring the
solution of a fully coupled problem. However, in most cases the
changes of the band structure due to the external pressure are
rather weak [e.g., for Ge the band gap changes only by about
1% for a rather high strain of about 10−3 (Ref. 38)]. Hence,
when calculating the space charge distributions the stress
contribution can be neglected in the first approximation. Then
the ionic and electrostatic field distributions are substituted in
Eqs. (12) to yield mechanical responses.
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Thick rigid planar 
electrode/substrate

h

Thin electrode 
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FIG. 1. (Color online) Schematics of ESM measurements with a
flattened scanning probe microscope (SPM) tip (a) is approximated
by the (b) strain response of the 1D system, where u3 is the surface
displacement for fixed back interface. Voltage V0 is applied to the top
electrode; h is the thickness of MIEC film.

A. Electrochemical strain microscopy of the MIEC

Both ionic and electronic contributions to the local strain
can be measured and distinguished by electrochemical strain
microscopy (ESM).11–14,84 For the ionically blocking tip
electrode, the electron transfer between the tip and the surface
and nonuniform electrostatic field result in the redistribution
of mobile ions and electrons within the solid, but no electro-
chemical process at the interface occurs.12 The schematic of
the system is shown in Fig. 1(a).

A Lamé-type equation for the mechanical displacement ui

can be obtained from the equation of mechanical equilibrium
∂σij (r)/∂xi = 0, where the stress tensor σij (r) is given by
Eq. (11a), namely,

cijkl

∂2uk

∂xj ∂xl

= − ∂

∂xj

{
−βa

ij [N−
a (r) − N−

a0]

−βd
ij [N+

d (r) − N+
d0] − γijkl

∂2ϕ

∂xk∂xl

+�C
ij [nC(r) − nC0] + �V

ij [p(r) − p0]

}
. (14)

Mechanical boundary conditions85 corresponding to the ESM
experiments11 are defined on the mechanically free interface
z = 0, where the normal stress σ3i is absent, and on the clamped
interface z = h, where the displacement ui is fixed:

σ3i(x,y,z = 0) = 0, ui(x,y,z = h) = 0. (15)

Hereafter we define x ≡ x1,y ≡ x2,z = x3 as well as
associating the indices 1 ≡ x,2 ≡ y,3 = z with vector and
tensor components.

The tip-bias-induced displacement of the MIEC surface
at the point x3 = 0, i.e., surface displacement at the tip-
surface junction detected by SPM electronics, for elastically
isotropic semispace can be calculated in the decoupling
approximation,12 using the appropriate tensorial Green func-
tion for elastic semispace (listed in, e.g., Ref. 86) or thin film
(derived in Refs. 87 and 88). The decoupling approximation
regards the flexoelectric effect and strain contribution as small
enough not to perturb the electrostatic potential and carrier dis-
tributions in the first approximation. Thus below we determine
the electric potential from Eq. (2) with carrier distributions (6)
and (8) without strain terms and then substitute the potential
and carrier distribution into Eq. (14).

Note, that the decoupling approximation introduced earlier
for the piezoresponse force microscopy (PFM) is sufficiently
rigorous for materials with low electromechanical coupling
coefficients,89,90 i.e., for all nonpiezoelectrics considered in
the paper. The accuracy of the decoupling approximation is
proportional to the square of the electromechanical coupling
coefficients, which generally does not exceed 10−2 for
nonferroelectrics.

B. Strain response of the surface layers

The schematic of the capacitorlike structure that models
a disklike SPM tip is illustrated in Fig. 1(b). We consider
a MIEC film of thickness h sandwiched between the planar
electrodes. For the strain measurements, the top electrode is
considered to be mechanically free (e.g., ultrathin, or liquid, or
soft polymer), so that its motion does not affect significantly
the mechanical displacement of the MIEC film surface. The
voltage V0 is applied to the top electrode; the bottom electrode
is earthed:

ϕ(z) = V0 ≈ const, ϕ(h) = 0. (16)

The voltage drop between the top and bottom electrodes
causes the one-dimensional (1D) redistribution of the carrier
concentration in the z direction.

The solution of the system (14)–(15) gives the equilibrium
mechanical displacement of the MIEC surface caused by the
flexoelectric, electronic and ionic contributions:

u3(z = 0) = −
∫ h

0
dz

((
�̃C

33 − 2s12�̃
C
11

s11 + s12

)
[nC (z) − nC0] +

(
�̃V

33 − 2s12�̃
V
11

s11 + s12

)
[p(z) − p0]

+
(

β̃a
33 − 2s12β̃

a
11

s11 + s12

)
[N−

a0 − N−
a (z)] +

(
β̃d

33 − 2s12β̃
d
11

s11 + s12

)
[N+

d0 − N+
d (z)] +

(
γ̃3333 − 2s12γ̃1133

s11 + s12

)
d2ϕ

dz2
.

)
(17)

Note that the contribution of the electron-phonon cou-
pling [first two terms in Eq. (17)] as well as the flex-
oelectric effect (the last term) in the local surface dis-
placement can be comparable with the first terms origi-

nating from the chemical expansion. Moreover, using the
order of magnitude estimate of γ ∼ 1 × 10−10 C/m,
the flexoelectric contribution to the PFM signal is about
12 pm/V.
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Using the decoupling approximation in the 1D Poisson
equation,

ε0ε33
d2ϕ(r)

dz2
= −q(p − p0 + nC0 − nC

+N−
a0 − N−

a + N+
d − N+

d0),

i.e., neglecting here the flexoelectric term γij33d
2uij /dz2,

and regarding that (−p0 + nC0 + N−
a0 − N+

d0) = 0 due to the
electroneutrality in the bulk MIEC, Eq. (17) can be simplified
as

u3(z = 0) ≈ −
∫ h

0
dz{λ(�̃C,γ̃ )[nC(z) − nC0]

+ λ(�̃V ,−γ̃
)
[p(z) − p0]

+μ(β̃a,γ̃ )[N−
a (z) − N−

a0]

+μ(β̃d , −γ̃ )[N+
d (z) − N+

d0]}. (18)

It is seen from Eq. (18) that the MIEC surface displacement
is proportional to the total charge of each species. Thus only
the injected charges control the displacement. Note that the
relation between the total charge and electrostatic potential on
the semiconductor surface is well established.74

In Eq. (18) we introduced the designations for the flexo-
electrochemical coupling constants as

λ(�̃,γ̃ ) = �̃33 − 2s12�̃11

s11 + s12
+

(
γ̃3333 − 2s12γ̃1122

s11 + s12

)
q

ε0ε33
,

(19)

μ(β̃,γ̃ ) = −β̃33 + 2s12β̃11

s11 + s12
+

(
γ̃3333 − 2s12γ̃1122

s11 + s12

)
q

ε0ε33
,

(20)

where the first terms originate from the deformation potential
or Vegard tensors, while the last ones originate from the
flexoelectric coupling.

The flexoelectric effect contribution to the coupling con-
stants λ and μ from Eqs. (19) and (20) is estimated in
Table I. It is seen from the Table I that the flexoelectric con-
tribution ranges from 0.1 to 10 eV for crystalline dielectrics,
which is comparable to or much higher than the chemical
expansion and deformation potential contributions, which are
∼0.5−5 eV for ionics. For incipient (SrTiO3) and normal
[Pb(Zr,Ti)O3 and BaTiO3] ferroelectrics the flexoelectric
effect contribution is much higher than the other ones.

For numerical estimations, we consider the situation when
the MIEC film with mobile acceptors and holes is at thermody-

namic equilibrium (i.e., all currents are absent). The analytical
solution for acceptor and hole redistribution in a thick MIEC
film and its surface displacement are derived in the Appendix
assuming that the film thickness h � RS , where the screening
radius RS =

√
ε33 ε0kBT /2p0q2.

Substitution of the total charge of each species in Eq. (18)
in the limit h � RS gives the estimations for the MIEC surface
displacement. Note that for the ionically blocking planar top
and substrate electrodes the identity

∫ h

0 dz[N−
a (z,t) − N−

a0] =
0 is valid,77–79,93 since the total amount of ionized acceptors
is conserved. Thus only the electron subsystem contributes to
the surface displacement (18) for the ion-blocking electrodes
as

u3(V0) ≈ λ(�̃V ,−γ̃ )

√
2ε33ε0kBT

q2
N−

a0

[
1− exp

(
− qV0

2kBT

)]
,

h � RS, (21a)

u3(V0) ≈ λ(�̃V , −γ̃ )

√
ε33ε0kBT

2q2
N−

a0

qV0

kBT
,

(21b)
h � RS, |qV0| � kBT .

It follows from Eq. (21b) that in the linear approximation the
electronic surface displacement is proportional to the applied
voltage V0, the stoichiometric acceptor concentration N−

a0, the
tensorial deformation potential �̃V

ii , and the flexoelectric effect
γ̃iijj via the coupling constant λ(�̃V ,γ̃ ).

Correspondingly, even though the strain contribution can
be neglected when considering the chemical potentials and
carrier distribution for a film with ion-blocking interfaces, we
could not neglect the deformation potential and flexoelectric
effect influence on the elastic subsystem, since it is the only
source of strain in the case. Measurements of the MIEC surface
displacement placed between thin ionically blocking planar
electrodes can be performed by an interferometer.

For ionically conducting electrode(s) substitution of the
total charge of each species in Eq. (18) yields the mixed ionic-
electronic strain-voltage response as

u3(V0)

≈ −{
λ
(
�̃V , −γ̃

)√2ε33ε0kBT

q2
N−

a0

[
exp

(
− qV0

2kBT

)
−1

]

+μ(β̃a,γ̃ )

√
2ε33ε0kBT

q2
N−

a0

[
exp

(
qV0

2kBT

)
− 1

]}
. (22)

TABLE I. Flexoelectric effect contribution to the coupling constants λ and μ.

Flexoelectric coupling Flexoelectric coupling
Flexoelectric tensor constant (eV) constant (m3)

Material γ (nC/m) ε (at 300 K)
(
γ33 − 2s12γ12

s11+s12

)
q

ε0ε33

(
γ̃33 − 2s12 γ̃12

s11+s12

)
q

ε0ε33
Reference

Crystalline dielectrics, elastomers ∼0.01−0.1 ∼ 10 ∼0.1−1 ∼(0.1−1) × 10−30 91
Single-crystal SrTiO3 γ3333 = −9, γ1122 = 4, γ1212 = 3 300 −2 −1.7 × 10−30 54
Ceramic PZT-5H γ 1122 = 500 2200 ∼30 ∼5 × 10−29 51
Ceramic BaTiO3 γ 1122 = 104 (with domain walls) 2000 ∼500 ∼10−27 52
Single-crystal BaTiO3 γ 3333 = −0.37 ab initio at 0 K 200 ∼0.5 ∼10−29 92
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FIG. 2. (Color online) (a),(b) Electronic strain-voltage response
(SVR) (absolute value) u3(V0) of the MIEC film placed between
ionically blocking electrodes. (c),(d) Mixed ionic-electronic strain-
voltage response u3(V0) of the MIEC film placed between ionically
blocking top electrode and ionically conducting bottom electrode
calculated for different values of mobile acceptor concentration
N−

a0 = 1023, 1024, 1025, 1026 m−3 (arrow near the curves), room
temperature T = 300 K, coupling constants λ(�̃V ,−γ̃ ) = 10−31

m3 and μ(β̃a,γ̃ ) = 10−30 m3, and MIEC film thickness h = 100RS .
(b),(d) are in dimensionless units.

Equation (22) is derived for thick films, h � RS . It is seen
from Eq. (22) that in the linear approximation the mixed
ionic-electronic surface displacement is proportional to the
applied voltage V0, acceptor stoichiometry concentration
N−

a0, deformation tensor �̃V
ii , Vegard expansion tensor β̃a

ii ,
and flexoelectric coefficients γ̃iijj via the coupling constants
λ(�̃V ,−γ̃ ) and μ(β̃a,γ̃ ).

Note that a realistic ESM tip is nano- or submicrosized.
Therefore the possibility of the ion motion in the lateral
direction rather leads to the condition of an ion-conducting
tip electrode than ion blocking.

The electronic strain-voltage response u3(V0) of the MIEC
film placed between ionically blocking electrodes as calculated
from Eq. (21) is shown in Figs. 2(a) and 2(b). The elec-
tronic strain-voltage response demonstrates strong asymmetry
(“diode-type rectification”) with the change of electric voltage
polarity: for positive V0 > 0 strong saturation occurs at very
small response values, while for negative V0 < 0 the response
rapidly increases linearly and reaches noticeable values u3(V0)
∼1–10 nm at V0 ∼ 1 V. Probably nonlinear behavior should
be reached for negative voltages in practice since the hole
statistics eventually becomes degenerate in the case of strong
depletion/accumulation of carriers near the MIEC surface; but
the effect of carrier degeneracy is beyond the approximation
(21). The origin of the strong voltage asymmetry, shown in
Figs. 2(a) and 2(b) is the conservation of the full amount
of mobile ionized acceptors, which are negatively charged.
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FIG. 3. (Color online) The crossover from the dominantly
ionic to electronic strain-voltage response: |λ(�̃V ,−γ̃ )/μ(β̃a,γ̃ )| =
0.001, 0.01, 0.1, 1, 10, 100, 1000 (figures near the curves) Acceptor
concentration N−

a0 = 1024 m−3; other parameters are the same as in
Fig. 2.

At negative applied voltage both external negative charges
(−Qe) accommodated at the SPM tip and negatively charged
acceptors (−Qa) accommodate positively charged holes,
whose total charge is Qp ∼ Qe + Qa . At positive applied
voltage external positive charges (+Qe) accommodated at the
SPM tip attract the mobile acceptors and repulse the holes,
whose total charge in this case is Qp ∼ Qa − Qe. For the
ion-blocking electrodes, the strain response is proportional
to the total charge of holes Qp in accordance with Eq.
(21). Thus the oversimplified speculations explain that the
response asymmetry for the considered case of the MIEC
film with mobile acceptors and holes is at thermodynamic
equilibrium. The response’s absolute value u3(V0) decreases
as the ion concentration decreases [follow the arrow direction
for the typical values of mobile acceptor concentration N−

a0 =
1023−1026 m−3 in Figs. 2(a) and 2(b)].

The mixed ionic-electronic strain-voltage response u3(V0)
of the MIEC film placed between telectrodes, one or both of
which is ionically conducting, was calculated from Eq. (22)
and is shown in Figs. 2(c) and 2(d). In logarithmic voltage
scale the asymmetry appearing with the change of electric
voltage polarity is rather weak [see Fig. 2(c)]. However, it
becomes obvious on the linear scale even for medium applied
voltages 0.5 � |qV0/kBT | � 5 [see Fig. 2(d)]. The asymmetry
effect in Figs. 2(c) and 2(d) originates from the fact that we
put λ(�̃V ,−γ̃ ) = 0.1μ(β̃a,γ̃ ) in our calculations, since the
typical electronic contribution �̃V

ii ∼ 10−31 m3 is an order of
magnitude smaller than the ionic, β̃a

ii ∼ 10−30 m3. For the case
λ(�̃V ,−γ̃ ) = μ(β̃a,γ̃ ) the asymmetry is absent, as follows
from Eq. (22).

The voltage behavior (symmetry or weak asymmetry) of
the curves for ionic exchange with ambient follows from the
fact that the problem is actually identical to that of the charge
accumulation at the interface of an intrinsic semiconductor.74

In dimensionless units the strain-voltage response depends
on one parameter qV0/(kBT ), as anticipated from the diode
theory for the case h � RS [see Figs. 2(b) and 2(d)].

The crossover from the dominantly ionic (|λ(�̃V ,− γ̃ )| �
|μ(β̃a,γ̃ )|) to electronic (|λ(�̃V , −γ̃ )| � |μ(β̃a,γ̃ )|)
strain-voltage response is shown in Fig. 3. In the case
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|λ(�̃V , −γ̃ )| = |μ(β̃a,γ̃ )| the strain-voltage curve is
symmetric.

V. SUMMARY

We derive the generalized form of the bias-strain-
concentration equation describing the linear relation between
the concentration of diffusing species and flexoelectric and
electronic effects in mixed ionic-electronic conductors. The
estimates of the electronic and ionic contributions to the
strain-voltage response of the mixed ionic-electronic conduc-
tors show that they are of the same order, and hence one
cannot neglect the electronic contribution into the surface
displacement of the sample with ion-blocking interfaces
(injection from the tip). To the best of our knowledge the
contribution of the electron-phonon and flexoelectric coupling
to the local surface displacement of the mixed ionic-electronic
has not been previously discussed. The evolved approach can
be extended to treat electrochemically induced mechanical
phenomena in solid-state ionics aiming toward analytical
theory and phase-field modeling of mixed ionic-electronic
conductors.
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APPENDIX: EQUILIBRIUM DISTRIBUTION OF THE
POTENTIAL AND SPACE CHARGE IN A SEMI-INFINITE

MIEC (DECOUPLING APPROXIMATION)

The equilibrium state corresponds to the absence of ionic
(acceptor, donor) and electronic (hole) currents. In the linear
drift-diffusion model the acceptor Ja and hole Jp currents have
the forms{

Ja = − (
Da

d
dz

N−
a − ηaN

−
a

d
dz

φ
) = 0,

Jp = − (
Dp

d
dz

p + ηpp d
dz

φ
) = 0.

(A1)

Hereafter we consider that the diffusion coefficients Da,p

and mobilities ηa,p obey the Nerst-Einstein relation ηd/Dd =
ηn/Dn = q/(kBT ), where kB = 1.3807 × 10−23 J/k, and T is
the absolute temperature.

The solution of Eqs. (A1) is

N−
a (z) = N0 exp

(
qϕ(z)

kBT

)
, (A2a)

p(z) = p0 exp

(
−qϕ(z)

kBT

)
(A2b)

Note, that solutions (A2) coincide with Eqs. (6b) and (8b) as
anticipated. Using the decoupling approximation (i.e., neglect-
ing here the term γij33d

2uij /dz2), the boundary problem for
electrostatic potential distribution has the following form:{

d2φ(z)
dz2 = − q

ε0ε

[
p0 exp

(− qφ(z)
kBT

) − N0 exp
(

qφ(z)
kBT

)]
,

φ (0) ≈ V0, φ (h → ∞) = 0, Ez = − dφ

dz

∣∣
h→∞ = 0.

(A3)

Rigorously speaking, the approximate equality ϕ(0) ≈ V0

in the second line of Eq. (A3) is correct only for a purely
Ohmic tip-electrode–surface contact for holes (electrons) and
in thermodynamic equilibrium, when the gradient of the elec-
trochemical potential level −ζp ≈ eϕ(z) + kBT ln(p(z)/p0) is
zero (∂ζp/∂z = 0) and the potential ζp is equal to the Fermi
level at the interface [see, e.g., Eqs. (7) and (8) in Ref. 93.
In accordance with Refs. 93 and 73, the purely Ohmic contact
conditions “correspond to either metal electrodes with adjacent
δ-doped semiconductor interfacial layers or heavily doped
semiconductor electrodes with a band gap similar to that of the
transport layer.” When the contact is not Ohmic the “acting”
potential difference ϕ(0) is not equal to the applied potential
V0, but to the difference in the electrochemical potentials of the
holes divided by their charge q, φ(0) = [ξ tip

p − ξMIEC
p (0)]/q,

and the difference [ξ tip
p − ξMIEC

p (0)]/q should be calculated
self-consistently from the applied voltage. However the deriva-
tion that follows is valid after the ansatz V0 → V0 + Vb.

The condition of the potential and electric field vanishing
at infinity leads to the local space charge vanishing which is
valid under the condition N0 = p0. Then Eq. (A3) acquires the
form

d2ϕ(z)

dz2
= 2qp0

ε0ε
sinh

(
qϕ(z)

kBT

)
(A4)

and can be integrated in a straightforward way. Multiplying
both sides of the equation by the potential gradient we
calculated the first integral as(

dφ(z)

dz

)2

= 4p0kBT

ε0ε

[
cosh

(
qφ(z)

kBT

)
− a

]
,

where the constant a = 1 from the boundary conditions of the
electric field vanishing at the infinity. Using the new variable
u = cosh[qφ/(kBT )] one could rewrite (A4) as

φ(z) = 4kBT

q
arctanh

[
tanh

(
qV0

4kBT

)
exp

(
− z

RS

)]
, (A5a)

N−
a (z) = p0 exp

(
qϕ(z)

kBT

)
, p(z) = p0 exp

(
−qϕ(z)

kBT

)
.

(A5b)

Here we introduced the screening radius RS =√
εε0kBT /(2p0q2).
Substitution of Eqs. (A5b) in Eq. (18) in the limit h �

RS gives the estimations for the MIEC surface displacement.
Note that for the ionically blocking planar top and substrate
electrodes the identity

∫ h

0 dz[N−
a (z,t) − N−

a0] = 0 is valid,77–93

since the total amount of ionized acceptors is conserved. The
conditions

∫ h

0 dz[N−
a (z,t) − N−

a0] = 0 and N0 = p0 lead to the
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expression for
p0 = N0 = N−

a0

[
1

h

∫ h

0
dz exp

(
qϕ(z)

kBT

)]−1

,

and thus for the ion-blocking planar electrodes only the
electron subsystem contributes to the surface displacement
(18) as

u3(z = 0) = λ(�̃V , − γ̃ )p0

∫ h

0
dz

[
1 − exp

(
−qϕ(z)

kBT

)]

≡ λ(�̃V , − γ̃ )hN−
a0

∫ h

0
dz

(
1 − eqϕ(z)/kBT

)

×
[∫ h

0
dzeqϕ(z)/kBT

]−1

. (A6)

Under the condition of high film thickness, h � RS ,
Eq. (A6) reduces to

u3(V0) ≈ λ(�̃V ,− γ̃ )

√
2ε33ε0kBT

q2
N−

a0

[
1− exp

(
− qV0

2kBT

)]
,

h � RS, (A7a)

u3(V0) ≈ λ(�̃V ,− γ̃ )

√
ε33ε0kBT

2q2
N−

a0

qV0

kBT
, (A7b)

(A7c)
h � RS, |qV0| � kBT .

It follows from Eq. (A7b) that in the linear ap-
proximation the electronic surface displacement is pro-
portional to the applied voltage V0, stoichiometric ac-
ceptor concentration N−

a0, tensorial deformation potential
�̃V

ii and flexoelectric effect γ̃iijj via the coupling constant
λ(�̃V ,γ̃ ).

For ionically conducting electrode(s) substitution of
Eqs. (A5) with p0 = N0 = N−

a0 in Eq. (18) yields the mixed
ionic-electronic strain-voltage response as

u3(z = 0) = −
{
λ(�̃V , − γ̃ )N−

a0

∫ h

0
dz

[
exp

(
−qϕ(z)

kBT

)
−1

]

+ λ(β̃a,γ̃ )N−
a0

∫ h

0
dz

[
exp

(
qϕ(z)

kBT

)
− 1

]}
.

(A8)

Under the condition of thick films, h � RS , Eq. (A8) reduces
to

u3(V0)

≈ −
{
λ(�̃V , −γ̃ )

√
2ε33ε0kBT

q2
N−

a0

[
exp

(
− qV0

2kBT

)
− 1

]

+ λ(β̃a,γ̃ )

√
2ε33ε0kBT

q2
N−

a0

[
exp

(
qV0

2kBT

)
− 1

]}
.

(A9)
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