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Thermodynamics of tip-induced nanodomain formation in scanning probe microscopy of ferroelectric films
and crystals is studied using the analytical Landau-Ginzburg-Devonshire approach and phase-field modeling.
The local redistribution of polarization induced by the biased probe apex is analyzed including the effects of
polarization gradients, field dependence of dielectric properties, intrinsic domain-wall width, and film thick-
ness. The polarization distribution inside a “subcritical” nucleus of the domain preceding the nucleation event
is shown to be “soft” �i.e., smooth without domain walls� and localized below the probe, and the electrostatic
field distribution is dominated by the tip. In contrast, polarization distribution inside a stable domain is “hard”
�i.e., sharp contrast with delineated domain walls� and the spontaneous polarization reorientation takes place
inside a localized spatial region, where the absolute value of the resulting electric field is larger than the
thermodynamic coercive field. The calculated coercive biases corresponding to formation of switched domains
are in a good agreement with available experimental results for typical ferroelectric materials. The microscopic
origin of the observed domain-tip elongation in the region where the probe electric field is much smaller than
the intrinsic coercive field is the positive depolarization field in front of the moving-counter domain wall. For
infinitely thin domain wall the depolarization field outside the semiellipsoidal domain tip is always higher than
the intrinsic coercive field that must initiate the local domain breakdown through the sample depth while the
domain length is finite in the energetic approach evolved by Landauer and Molotskii �we refer the phenomenon
as Landauer-Molotskii paradox�. Our approach provides the solution of the paradox: the domain vertical
growth should be accompanied by the increase in the charged domain-wall width.
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I. INTRODUCTION

A. Local bias-induced phase transitions by SPM

Bias-induced phase transitions and order-parameter dy-
namics in polar materials are a subject of substantial experi-
mental and theoretical interest. The examples include polar-
ization switching in ferroelectric materials with applications
to information storage and memory technologies1–3

antiferroelectric-ferroelectric phase transitions and energy
storage,4 and a broad gamut of bias-induced transitions be-
tween ergodic, nonergodic, and ferroelectric states in ferro-
electric relaxors.5 Traditionally, these phenomena are studied
macroscopically using the variants of capacitance and
current-detection techniques6 or interferometric
detection.7–10 In these studies, the information on local
mechanisms controlling the nucleation and initial stages of
phase transformation is essentially lost, and only averaged
distributions of switching parameters and activation energies
can be extracted.11–13 This limitation is common for all polar
materials with reversible bias-induced transitions and ex-
tends to other systems with partially reversible and irrevers-
ible transitions, including phase-change materials,14

electrochemical,15 and solid-state reactions.16

The emergence of the scanning probe microscopy �SPM�
based techniques in the last decade opens the way to concen-
trate an electric field within a nanoscale volume of

material17,18 thus inducing a local phase transition. This field-
localization approach is complementary to a classical ap-
proach in nanoscience of material confinement �e.g., using
the nanoparticles, etc� and allows studying local properties
avoiding the effect of surfaces and interfaces. For ferroelec-
tric materials, the strongly inhomogeneous electric field
causes polarization reversal in the nanosized region that can
be used as a functional basis of data storage19,20 as well as a
probing technique to study local mechanisms of domain
nucleation, growth, and relaxation.21–26

In piezoresponse force spectroscopy �PFS� approach, lo-
cal polarization switching is combined with the detection of
electromechanical response27 to yield the information on do-
main growth below the SPM tip.28 Spatially resolved PFS
was used to study polarization switching in small volumes
with negligible defect concentration29 and to map distribu-
tion of random-bond and random-field components of disor-
der potential30 as well as polarization switching on a single-
defect center.31

These experimental developments have necessitated the
theoretical analysis of domain nucleation mechanisms in the
field of the SPM probe on the ideal surface32–36 and in the
presence of charged defects.37 To date, the vast majority of
these studies have been performed in the rigid dielectric ap-
proximation, as summarized below.
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B. Phenomenological approaches to nanoscale polarization
reversal

The “rigid ferroelectric” approximation was originally
employed by Landauer38 to calculate the energy barrier for
nucleation of semiellipsoidal domain in a planar capacitor
under a homogeneous electric field. A similar approximation
was used by Miller and Weinreich39 to study domain-wall
motion and extended by Sidorkin40 to analyze the wall-defect
interactions. Huber41 considered the impact of electrome-
chanical coupling on domain nucleation in a homogeneous
external field. In this model, the domain walls between the
regions with field-independent �i.e., rigid� spontaneous polar-
ization �PS are regarded as sharp �mathematically infinitely
thin�. The polarization adopts its bulk value within the do-
mains and changes stepwise at the infinitely thin domain wall
between them.

This approach was utilized in a series of works by Mo-
lotskii et al.32,35,42 for analyzing domain formation under the
inhomogeneous electric field of a biased SPM probe. The
most striking result obtained by Molotskii et al. is the “ferro-
electric breakdown,” referred to the emergence of a stable
spikelike domain with submicron radius r and length l of
10–100 microns, i.e., the polarization reversal appears in the
spatial region where the vanishing field of the probe is much
smaller than the intrinsic coercive field. Molotskii et al. ex-
plained this behavior from the free-energy consideration.
Within the Landauer-Molotskii �LM� thermodynamic ap-
proach, the nucleus sizes and the equilibrium radius r, and
length l of semiellipsoidal domain are calculated from the
free-energy excess F�V ,r , l�=FS�r , l�+FV�V ,r , l�+FDL�r , l�,
where the positive domain-wall surface energy FS�r , l�
��Slr at l�r ��S is the surface-energy density�. The Land-
auer depolarization-field energy FDL�r , l� is positive and pro-
portional to r4 / l at l�r and so it vanishes as 1 / l. The nega-
tive interaction energy between the probe field and the
domain is FV�V ,r , l��−Vr2l / ��r2+d2+d����r2+d2+�d+ l�
�� is dielectric anisotropy factor and V is the applied bias�. It
is proportional to rl / �r+ l� when the domain radius r exceeds
the characteristic size of the tip, d, so it saturates as domain
length increases. The condition of negligible surface energy
��S=0� leads to domain breakdown l→� even at infinitely
small bias V.

This thermodynamic analysis was further developed by
Morozovska et al.36,43 to account for the finite electric field
below the probe, surface and bulk screening, etc. In particu-
lar, this analysis allows the description of bias dependence of
the saddle point on the free-energy surface F�V ,r , l�, i.e., the
activation energy for nucleation. It was found that as a func-
tion of probe bias the activation energy scales as �V−3,
where V is the applied bias and in this model the nucleation
process is thermally activated. For typical materials param-
eters, the corresponding activation energies are in the 0.1–10
eV range. However, recent experimental studies have illus-
trated that temperature dependence of activation bias is much
weaker than predicted by the rigid model;44 similarly, the
comparison between phase-field modeling and experimental
measurements indicates that the switching mechanisms in
PFM is close to being intrinsic.29

C. Polarization switching in the LGD approximation

The self-consistent description of SPM probe-induced do-
main formation in ferroelectrics and other ferroics requires
an analytical approach based on the Landau-Ginzburg-
Devonshire �LGD� thermodynamic theory. For ferroelectrics,
LGD describes the dynamics of a continuous spatial distri-
bution of the polarization vector P in an arbitrary electric
field and the nonlinear long-range polarization interactions
�correlation effects�.45,46 In this manner, the LGD approach
avoids the typical limitations �sharp walls and field-
independent polarization value� of the rigid ferroelectric ap-
proach �compare Figs. 1�b� and 1�c��. Charge-neutral
180°-domain walls do not cause the depolarization electric
field and usually are ultrathin. However, the charged �or
counter� domain wall at the domain apex creates a strong
depolarization field due to uncompensated bound charges
�div P�0�. The charged wall inevitably appears at the tip of
the nucleating domain �Fig. 1�b��.

Polarization switching on a BiFeO3 �100� ideal surface29

and in the presence of a well-defined bicrystal grain
boundary47 was recently studied numerically using phase-
field modeling. This analysis confirmed the formation of a
soft subcritical nucleus below the critical bias for nucleation.
Above the nucleation threshold, the formation of needlelike
domains as well as domain wall broadening at the domain
apex has been observed. However, the limitations of the sys-
tem size for the three-dimensional phase field modeling pre-
clude the analytical determination of the domain shape when
the domain size significantly exceeds the tip size. Similarly,
screening at the surface and the domain apex are difficult to
access systematically.

Previously, the interaction of a ferroelectric 180°-domain
wall with a strongly inhomogeneous electric field of the
biased probe was studied analytically for a second-order
ferroelectric within the LGD approach.48 The approximate
analytical expressions for the equilibrium distribution of
surface polarization were derived from the free-energy
functional by a direct variational method. However, local
consideration of the electric field distribution, nonlinear
and correlation effects are necessary for a reliable analysis of
the polarization depth profile and the length of tip-induced
domains in both first and second-order ferroelectric materi-
als.
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FIG. 1. �Color online� �a� Schematics of the domain nucleation
caused by the strongly inhomogeneous electric field of the biased
SPM probe in contact with the sample surface. ��b� and �c�� Char-
acteristic aspects of LGD approach and rigid LM approach.
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In this paper we adopt the local LGD-based approach for
the description of the polarization dynamics in the local elec-
tric field of an SPM probe. The analytical expressions for-
both first- and second-order ferroelectrics are derived. Both
the prenucleation and postnucleation stages are analyzed.
This analysis provides insight into the effects of the intrinsic
wall width, electrostatic potential distribution of the probe,
ferroelectric material parameters, and the nonlinear correla-
tion and depolarization effects on the local polarization dy-
namics.

II. THE PROBLEM STATEMENT

Here we study polarization switching in a uniaxial ferro-
electric material. The spontaneous polarization P3�r� is di-
rected along the polar axis, z. The sample is dielectrically
isotropic in transverse directions, i.e., permittivities �11 and
�22 are equal while the �33 value may be different. The de-
pendence of the in-plane polarization components on the
electric field is linearized as P1,2�−�0��11−1����r� /�x1,2.
Then the problem for the electrostatic potential ��r� inside
the material acquires the form

�33
b �2�

�z2 + �11� �2�

�x2 +
�2�

�y2	 =
1

�0

�P3

�z

��x,y,z = 0� = Ve�x,y�, ��x,y,z = h� = 0. �1�

Here we introduced the dielectric permittivity of the
background49 as �33

b �typically �33
b �10�. Ve�x ,y� is the po-

tential distribution at the sample surface, �0 is the universal
dielectric constant, and h is the sample thickness.

The electrostatic potential ��r� includes the effects of the
probe field as well as the depolarization field created by the
bound polarization charges of the counter wall at the domain
apex. The perfect screening of the depolarization field50 out-
side the sample is realized by the ambient screening charges.
This condition is supported both by recent experimental
studies based on Kelvin probe force microscopy that demon-
strate extremely small electrostatic fields above ferroelectric
surfaces, indicative of almost complete screening,51,52

density-functional theory �DFT� calculations,53 synchrotron
x-ray,54 as well as recent studies of polarization switching in
ultrathin films in ambient and in the presence of metallic
electrodes.55 Furthermore, the nucleation stage of domain
formation �i.e., for small domain sizes� is primary affected
by the electrostatic fields at the tip-surface junctions, for
which the assumption of prescribed potential is well estab-
lished.

In the effective point-charge approximation, the potential
distribution produced by a SPM probe on the surface of a
semi-infinite sample can be approximated as

Ve�	� � V
d

�	2 + d2
, �2�

where 	=�x2+y2 is the radial coordinate, V is the applied
bias, and d is the effective charge-surface separation �i.e.,
probe size� determined by the probe geometry �see Refs. 36,
56, and 57 and Fig. 1�a��. The potential is normalized assum-

ing a perfect electrical contact with the surface, Ve�0��V. In
the case of a flattened tip represented by a disk of radius R0
in contact with a sample surface and separation d=2R0 /
 is
almost independent of the film depth and its dielectric
permittivity.58

In the framework of the LGD phenomenology, a stable or
metastable spontaneous polarization distribution inside the
proper ferroelectric can be found as the solution of the sta-
tionary LGD equation

�P3 + �P3
3 + P3

5 − �
�2P3

�z2 − �� �2P3

�x2 +
�2P3

�y2 	 = −
��

�z
. �3�

The gradient �or correlation� terms ��0 and ��0 �usually
����, the expansion coefficient �0 while ��0 ���0�
for first-�second-�order phase transitions. The coefficient �
�0 in the ferroelectric phase. In thin films, the coefficient �
is renormalized by the elastic stress as studied in detail in
Refs. 59 and 60.

The boundary conditions for the polarization distribution
are

P3�	 � d,z � 0� → − PS,
�P3

�z
�z = 0� = 0,

�P3

�z
�z = h� = 0,

�4�

where PS is the initial spontaneous polarization value. The
boundary condition �P3 /�z=0 is called “natural”61 and cor-
responds to the case when the surface-energy contribution
can be neglected and hence �→� in a more general bound-
ary condition P3+���P3 /�z�=0. In the case of the natural
boundary conditions, a constant polarization value P3=−PS
satisfies Eq. �3� at zero external bias, V=0. For a first-order
ferroelectric, the spontaneous polarization in the bulk is PS

2

= ���2−4�−�� /2 while PS
2=−� /� for a second-order

ferroelectric.45

III. POLARIZATION REDISTRIBUTION INDUCED BY
THE PROBE BIAS: PHASE-FIELD MODELING

During polarization switching the polarization distribution
is always inhomogeneous, i.e., it depends on the spatial lo-
cation within the sample. In the phase-field approach,62–64

we use the spatial distribution of local spontaneous polariza-
tion to describe a domain structure. The electric field distri-
bution is obtained by solving the electrostatic Eq. �1�. With
all the important energetic contributions to the total free en-
ergy in the LGD free-energy functional F�P1 , P2 , P3 ,uij� as a
function including the electrostatic energy, the temporal evo-
lution of the polarization vector field and thus the domain
structure is then described by the time-dependent LGD equa-
tions

�Pi

�t =−�
F
Pi

, where � is the kinetic coefficient related to
the domain-wall mobility. For a given initial distribution of
polarization, numerical solution of time-dependent LGD
equations yields the temporal and spatial evolution of polar-
ization and thus domain switching under an external field.

The profiles of the probe-induced polarization redistribu-
tion P3 / PS calculated numerically by phase-field modeling
are shown in Figs. 2�a�–2�d�. Spatial distributions of the
electric field are shown in Figs. 2�e�–2�h�.
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The polarization switching is found to proceed in three
stages: �1� subcritical nucleus, �2� stable domain formation
and mainly vertical growth, and �3� lateral growth of the
intergrown cylindrical domain. �1� At biases less than critical
nucleation bias Vc the polarization distribution inside the
subcritical domain nucleus is very smooth or “soft” with
polarization maximum directly below the probe and no sharp
changes like the charged domain wall appear �see right inset
in Fig. 2�a��. Depolarization field is rather weak at V�Vc
and thus corresponding electric field distribution is centered
in the tip-surface junction area �see right inset in Fig. 2�e��.
�2� In contrast to the smooth profile of the electric field and
the soft polarization distribution inside the subcritical do-
main nucleus, the polarization distribution inside the stable
domain is “hard” but the domain-wall width is finite �com-
pare Fig. 2�a� with Figs. 2�c� and 2�d��. Electric field now
contains significant dipolar component due to the depolariza-
tion field induced by the charge domain wall at the tip apex
�compare Fig. 2�e� with Figs. 2�f� and 2�g��. �3� As the bias
increases, the domain penetrates through the sample depth
and then purely radial growth proceeds �see Figs. 2�d� and

2�h��. The depolarization field finally disappeared for a cy-
lindrical domain.

Note that the condition P3� PS is obtained within the
LGD approach with the increase in the applied bias �see
scales in Figs. 2�b�–2�d��. From Figs. 2�e�–2�h� it can be
seen that the electric field is maximal outside the domain tip
allowing for the strong polarizing effect �see the dark spot�.
In the next section we will demonstrate that the effect may
be responsible for the motion of counter domain wall. Fig-
ures 2�b�, 2�c�, and 2�j� illustrate that the domain shape is
close to prolate semiellipsoid of length l and radius r, i.e., the
aspect ratio r / l�1. One could also see that polarization out-
side the domain-wall region is almost constant.

The domain-wall width w�,z appeared to be orientation
dependent �see Fig. 2�j��. The width has minimal value w� at
the surface z=0 �where the 180° wall is not charged� and
maximal value wz at z= l, where the wall bound charge is
maximal �see also schematics shown in Fig. 1�b��.

For chosen material parameters widths values are w�

�2 nm and wz�6 nm �see Fig. 3�a��. This result are in
qualitative agreement with the results of the DFT
modeling,66 where the authors obtained that Ising-type 180°
domain wall in LiNbO3 is at least two times thinner that the
charged wall with Neel-type characters. Note, that charged
domain walls can be 10 unit cells wide in Pb�Zr,Ti�O3,67

also the walls broaden near the LiNbO3 �LNO� surface al-
lowing for stray depolarization field.68

For chosen parameters and d=18 nm domain nucleation
bias is about 15 V. It is clear from Fig. 3�b� that the nucle-
ation bias is almost linear to effective charge-surface separa-
tion d that is proportional to the radius of the PFM tip.

IV. PROBE-INDUCED DOMAIN FORMATION:
ANALYTICAL CALCULATIONS

A. Analytical expression for depolarization field

After elementary but cumbersome transformations �the
details can be found in Ref. 69�, exact solution of electro-
static problem �1� for the case of the probe-field radial sym-
metry Eq. �2� was derived as
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FIG. 2. �Color online� Probe-induced polarization P3�x ,z� / PS

�the first row I� and electric field E3�x ,z� distribution �the second
row II� in LiNbO3 calculated for different applied bias V /V0

=16,21,25,29 �right labels�. Material parameters: �33
b =5, �11=84,

�33=30, �=−1.95�109 m /F, �=3.61�109 m5 / �C2F�, PS

=0.73 C /m2 �Ref. 65�, gradient coefficients �=�=10−9 SI units;
effective tip-surface distance d=18 nm. The simulation size is
128 nm�128 nm�57 nm. Plots �j� and �k� are zoomed on cen-
tral parts of the plots �c� and �g�.
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E3�	,z�=

0

�

dkkJ0�k	��Ṽe�k�
cosh�k�h − z�/�b�

sinh�kh/�b�
k

�b
−

P̃3�k,z�
�0�33

b

+ 

0

z

dz�
P̃3�k,z��

�0�33
b cosh� k

�b
z�	 cosh�k�h − z�/�b�

sinh�kh/�b�
k

�b

+ 

z

h

dz�
P̃3�k,z��

�0�33
b cosh� k

�b
�h − z�� cosh�kz/�b�

sinh�kh/�b�
k

�b
� ,

�5�

where J0 is the Bessel function of zero order, 	=�x2+y2 is

the radial coordinate, Ṽe�k�=Vd exp�−kd� is the Fourier im-

age of Ve�x ,y� on transverse coordinates �x ,y�, P̃3�k ,z� is the
Fourier image of polarization P3�	 ,z�, k=�k1

2+k2
2 is the spa-

tial wave-vector absolute value, and �b=��33
b /�11 is the

“bare” dielectric anisotropy factor. Further analysis of the
domain formation requires the analytical description of the
electric field depolarization field produced by the counter
domain wall.

The spatial distribution Eq. �5� of the z component of the
electric field can be represented as E3�	 ,z�=EP�	 ,z�
+EW�	 ,z�, where EP�	 ,z�, is the probe field inside the
sample and EW�	 ,z� is the depolarization field created by the
counter domain wall. After lengthy transformations these
terms were estimated from Eq. �5� as

EP�	,z� � 

0

�

dkJ0�k	�Ṽe�k�
cosh�k�h − z�/��

sinh�kh/��
k

�
= �

V

�

�d + z/��d
��d + z/��2 + 	2�3/2 h � �d

Vd

2h� 1
��d − �h − z�/��2 + 	2

+
1

��d + �h − z�/��2 + 	2� h � �d� . �6�

The effective dielectric anisotropy factor �
=��b

2+1 / ��11�0�� originates from the linear expansion of
polarization field dependence P3�	 ,z�� PS�	 ,z�
+E3�	 ,z� / ��0��, where PS�	 ,z� is the spontaneous polariza-
tion distribution. In order to derive approximate expressions
the integral in Eq. �6� was expanded in the image charge
series. For very thick �h��d� or ultrathin �h��d� films, the
series was reduced to the first term.

When the stable domain appears, the domain wall con-
taining the uncompensated bound electric charge with the
total surface density of �b�r�=2PSnz�z� produces the addi-
tional depolarization field EW�	 ,z� �nz�z� is the outer normal
to the domain boundary�. The value of EW�	 ,z� was analyti-
cally calculated using the approximation of semiellipsoidal
domain with radius r, length l, and the finite intrinsic width
w�,z of the curved domain wall.

For the case l�h the following approximation was de-
rived:

EW�	,z� � − 

−1/2

1/2

dtEL�	,z,r + tw�,l + twz� , �7�

where the expression for the Landauer depolarization field
EL is well known as38

EL�	,z,r,l� = �E�− nD��
r

l
	 	2

r2 +
z2

l2 � 1

ND���	,z�,z,r,l�
	2

r2 +
z2

l2 � 1

.� �8�

�E=2PS / ��0�11�
2� is the field amplitude, depolarization fac-

tor nD is �Ref. 70�

nD�a� =
a2

�1 − a2�3/2 �arctanh��1 − a2� − �1 − a2� . �9a�

Approximately, nD�a��a2 / �1+a2�, where a=�r / l is the re-
duced aspect ratio. Function ND

ND��,r,l� =
��r/l�2

�1 − ��r/l�2�3/2��1 − ��r/l�2

1 + ��2/l2

− arctanh��1 − ��r/l�2

1 + ��2/l2 
+ �1 − ��r/l�2

1 + ��2/l2 3/2 z2�l2 + ��2��r2 + ��
z2�r2 + ��2�2 + 	2�l2 + ��2�2� .

�9b�

Coordinate ��	 ,z�=0.5���r2−	2+ �z2− l2� /�2�2+4	2z2 /�2

+	2−r2+ �z2− l2� /�2�. At the domain base, ND�0,z=0,r , l�=
−nD��r / l� while at the domain tip ND�0,z= l ,r , l�=1
−nD��r / l� �see supplement in Ref. 69 for details�.

It is very important to notice that the field EW�	 ,z� �given
by Eq. �7� for the finite wall width w�0� differs from the
Landauer depolarization field EL�	 ,z� �given by Eq. �8� and
corresponding to the case of infinitely thin domain walls with
w=0�. The Landauer field is homogeneous inside the semiel-
lipsoidal domain and vanishes as �r / l�2 at r / l→0. However,
outside the domain tip it changes the sign �allowing for the
surface bound charge� and so it acts as the polarizing field
that can exceed the intrinsic coercive field Ec, for the second-
order ferroelectrics Ec= PS / �3�3�0�11�

2� �see filled regions
in Figs. 4�a� and 4�b� and compare with Figs. 2�e�–2�h� and
2�k��. This renders the application of the Landauer model for
the description of the domain growth at the latter stages not
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self-consistent since the large field concentration at the do-
main apex leads to the unphysical singularity.

It directly follows from Eq. �8� that at the domain top
plane z=0 the field EL�	 ,z� is continuous: EL�r−0,0�
=EL�r+0,0�=−nD��r / l��E while at the domain apex the
jump has appeared: EL�0,z= l−0�=−nD��r / l��E , EL�0,z
= l+0�= �1−nD��r / l���E. The jump of depolarization field
EL�0, l� for the case of an infinitely thin counter domain wall
is illustrated in Figs. 4�c� and 4�d� by dotted curves.

Field EW�0,z� is shown in Figs. 4�c� and 4�d� by solid
curves corresponding to the increase in domain-wall width
w. The field EW�0,z� is maximal at the outer boundary of the
domain wall, i.e., in the point z= l+wz /2, where the local
breakdown is most probable. In contrast to Landauer
depolarization field, the field EW�	 ,z� is continuous with
the approximate expressions derived from Eq. �8�: EW�	 ,0�
�EL�	 ,0�=−nD��r / l��E at 	�r, r�w�, and l�wz �see
Fig. 4�e�� while EW�0, l��0.5· �EL�0, l−0�+EL�0, l+0�� �see
Figs. 4�c� and 4�d��. It is clear from Figs. 4�c� and 4�d� that
EL�0, l−0��EW�0, l��EL�0, l+0�. Analytical results shown
in Figs. 4�c�–4�e� are in agreement with phase-field model-
ing results presented in Figs. 2�e�–2�h�.

The strong positive depolarization field �EL�Ec� in front
of the infinitely thin charged domain wall causes the sponta-
neous increase in the domain length leading to the domain-
wall breakdown into the depth of the sample �compare with
the spikelike domain appearance and domain breakdown cal-
culated within energetic LM approach�. However after mini-
mization of the corresponding LM free energy calculated for
infinitely thin domain walls, the domain length appeared al-
ways finite. Thus our approach provides the solution of the
Landauer-Molotskii paradox: the domain vertical growth
should be accompanied by the increase in the width of the
charged domain wall �see solid curves in Figs. 4�c� and 4�d��.

The width increase smears the jump of the depolarization
field at the domain tip, and the domain-wall broadening and
propagation is finished once the field in front of the wall
becomes smaller than the coercive field. Note that math-
ematically Eq. �7� is similar to the averaging of depolariza-
tion field over the domain wall as proposed and argued by
Drugard and Landauer for the flat domain wall.71

The transverse correlation length w�

=�� / ��+3�PS
2+5PS

4� defines the finite intrinsic width of
the 180°-domain wall which it is at least several lattice con-
stants for typical values of ��10−7

¯10−9 J m3 /C2 at room
temperature. For most ferroelectrics, the effective tip size d
�10 nm is typically much larger than the width w�1 nm,
this approximation is used hereinafter.

The spatial distribution of the polarization can be found as
the solution of the nonlinear Eq. �3� rewritten as

�P3�	,z� + �P3
3�	,z� + P3

5�	,z� − �
�2P3

�z2 − �� �2P3

�	2 +
1

	

�P3

�	
	

= E3�	,z� . �10�

We emphasize that the electric field E3 given by Eq. �5� is the
sum of the probe field EP�	 ,z� and depolarization field
EW�	 ,z� approximately given by Eqs. �6� and �7�. The left-
hand side of Eq. �10� describes the conventional ferroelectric
hysteresis in the system with spatial dispersion �e.g., with
polarization gradient�. In the continuous media approxima-
tion both polarization and its second derivative are small in
the immediate vicinity of domain-wall boundary since the
boundary is an inflection surface. Under the typical condition
w�z��d, a thermodynamically stable domain-wall boundary
	�z� can be estimated from the Eq. �10� as the coercive point,
i.e., under the condition ��+3�P3

2�	 ,z�+5P3
4�	 ,z��=0 valid

at coercive field: E3�	 ,z�=Ec.
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FIG. 4. �Color online� ��a� and �b�� Mechanism of domain
breakdown in the case of infinitely thin counter domain wall. Con-
stant lines of the Landauer depolarization-field ratio EL�	 ,z� /Ec for
semiellipsoidal domain with radius r and length l in LiNbO3 for �a�
l /r=0.3 and �b� l /r=3. Dashed contour is the initial domain bound-
ary. Filled areas indicate the region where depolarization field EL is
more than coercive field Ec. Dotted contour schematically shows
the new domain boundary originated from the polarizing effect of
the counter domain wall. ��c� and �d�� Depth distribution
EW�0,z� /�E for different aspect ratios l /r=1,3 ,9 �group of curves
I, II, and III�, w�,z=0 �dotted curves�; wz=3w� and w� /r
=0.1,0.2,0.3 �solid curves 1, 2, and 3�. Dashed line corresponds to
coercive field Ec. �e� Cross section EW�x ,z� /�E for the aspect ratio
l /r=3, different depth z / l=0,2 /3,1 ,4 /3; wz /w�=3 and w� /r
=0.1,0.2,0.3 �solid curves 1, 2, and 3� and w�,z=0 �dotted curves�.
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The intrinsic coercive field Ec is well known72 as

Ec =�
2

3�3
�−

�3

�
for second order ferroelectrics

2

5
�2� + �9�2 − 20��� 2�

− 3� − �9�2 − 20�
	3/2

for first order ferroelectrics

.� �11�

Note that this analysis essentially justifies early arguments
of Kolosov et al.73 stating that the domain size in a PFM
experiment corresponds to the region in which tip-induced
field exceeds coercive field. Here we obtained a similar result
but for the condition for the sum of the nascent domain de-
polarization field and the tip-induced field to exceed the co-
ercive field.

B. Vertical growth of the domain in thick films

The bias dependence of the domain radius r�V� at the
sample surface should be determined from the equation
E3�	 ,z�=Ec at z=0 while the domain length l�V� is deter-
mined at 	=0. For film with thickness h�d and domain
length l�h we derived coupled equations for the radius r
and length l bias dependences

�EP�r,0� = Ec − EW�r,0�
EP�0,l� = Ec − EW�0,l�

.� �12�

Expressions for the probe field EP and the counter domain-
wall depolarization filed EW are given by Eqs. �6� and �7�. As
anticipated, the domain breakdown through the sample depth
�l→�� appears under the condition EW�Ec that is true for a
negligible intrinsic width w→0.

When the domain approaches the bottom electrode �oppo-
site to the above-considered case l�h� we put l=h and EW
=0 in Eqs. �12�, and thus obtained rough estimations for the
corresponding domain radius and critical bias that initiates
domain intergrowth through the sample depth

rint�h� = �d��1 + �h/�d��4/3 − 1 � �3 dh2 h � �d

�h/���2 – 7�h/�d�2 � h h � �d
� ,

�13a�

Vint�h�

� ��d�1 +
h

�d
	2�Ec + nD��rint

h
	�E � h4/3 h � �d

h�Ec + nD��rint

h
	�E � h h � �d� .

�13b�

Note that expressions �13� derived for the case of the electric
excitation by the localized probe field with characteristic
scale d differs from the semiempirical Kay-Dunn law74

which stated that r�h2/3 and coercive field Ecr�h−2/3 for
homogeneous external field. For films with thickness h

��d, the bias dependences of the domain length l�V� and
radius r�V� calculated from Eqs. �13� are shown in Fig. 5 for
LiNbO3 and Fig. 6 for typical ferroelectric materials includ-
ing LiTaO3 �LTO�, PbTiO3 �PTO�, and PbZr40Ti60O3 �PZT�
in three limiting cases �i� without depolarization field, i.e., at
EW=0 �see dashed curves in Figs. 5 and 6�. �ii� No motion of
the charged domain wall by depolarization field, i.e.,
EW�0, l�=EL�0, l−0��−nD��r / l��E �see dotted curves in
Figs. 5 and 6�. �iii� The motion of the charged domain wall
by the depolarization field is considered, i.e., EW is given by
Eq. �7� �see solid curves in Figs. 5 and 6�.

Case �i� is possible for complete screening of the depolar-
ization field by free carriers which immediately surround the
counter domain wall. Case �ii� has unclear physical interpre-
tation �may be strong pinning or a very fast process� and is
shown in Fig. 5 for comparison only.

The calculated coercive biases Vc�1–10 V of domain
reversal are in the same range as available experimental
results28–31,76,77 but further comparison is hindered by the
lack of knowledge on the exact tip geometry. At biases V
�Vc the domain nucleation is absent in a real time scale.
Under the perfect screening of domain-wall depolarization
field by free charges, the domain formation at biases V�Vc
is barrierless since a new domain appears with zero sizes
r�Vc�= l�Vc�=0 �see dashed curves in Fig. 5�a��. In contrast,
when the motion of the charged domain wall by depolariza-
tion field is absent, activation barrier appears since unstable
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FIG. 5. �Color online� �a� Domain radius r�V� and �b� length
l�V� bias dependence calculated within LGD approach for LiNbO3

�with �11=84, �33=30, �=−1.95�109 m /F, �=3.61
�109 m5 / �C2F�, and PS=0.73 C /m2�. Effective distance d
=25 nm, �33

b �5, sample thickness h→�. ��a� and �b�� Solid curves
are calculated from Eq. �12� for EW�0 given by Eq. �7� at w�

=1 nm, wz /w�=3 �case iii�; dashed curves correspond to EW=0
�case i�; and dotted curves correspond to EW�0, l�=EL�0, l−0� �case
ii�.
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regions appeared at the domain onset �see dotted curves at
Fig. 5�a��.

Note that the behavior of the curves at sizes less that 0.8
nm shown in Fig. 5 should be ignored since for the sizes less
2–3 lattice constants, the continuous LGD approach is not
expected to be applicable. However, the jumps of the domain
radius �r and length �l up to sizes more than tens of nanom-
eters should be interpreted as a first-order nucleation �see
solid curves onset in Figs. 5 and 6�. The activation barrier
disappears at coercive bias Vc.

The approximate expressions for the domain radius r,
length l, bias dependences, and shape 	�z� derived from Eq.
�12� are summarized in the Table I for the cases �i�–�iii�.
Note that the coercive bias Vc of domain formation is pro-
portional to the intrinsic coercive field Ec given by Eq. �11�.
In all the cases �i�–�iii� Vc is proportional to d, the analytical
result is in a perfect agreement with phase-field results pre-
sented in Fig. 3�b�.

As it follows from Table I, in the absence of the domain-
wall motion by the depolarization field, the domain length
depends on bias as l�V��V1/2 at high voltage while the do-
main radius r�V��V1/3 increases more slowly than in LM
approach with l�V��V and r�V��V2/3. If the strong positive
depolarization field moves the charged domain wall, we still
obtained that r�V��V1/3 but the domain length rapidly in-
creases.

C. Lateral growth of the domain in the film

Finally, we consider the lateral growth of a cylindrical
domain appeared after the domain breakdown in thin ferro-
electric films. Under the condition of domain intergrowth
through the film depth, the charged domain wall disappears
�all walls are 180°� and so one should put EW=0 in Eq. �10�.
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FIG. 6. �Color online� Domain length l�V� and radius r�V� bias
dependence calculated within LGD approach for typical ferroelec-
tric materials: LNO �LiNbO3 with �11=84, �33=30, �=−1.95
�109 m /F, �=3.61�109 m5 / �C2F�, and PS=0.73 C /m2�; LTO
�LiTaO3 with �11=54, �33=44, �=−1.31�109 m /F, �=5.04
�109 m5 / �C2 F�, and PS=0.51 C /m2�; PTO �PbTiO3 with �11

=124, �33=67, �=−3.42�108 m /F, �=−2.90�108 m5 / �C2F�, 
=1.56�109 m5 / �C2F�, and PS=0.75 C /m2�; PZT �PbZr40Ti60O3

with �11=497, �33=197, �=−1.66�108 m /F, �=1.44
�108 m5 / �C2F�, =1.14�109 m5 / �C2F�, and PS=0.57 C /m2

�Ref. 75��. Effective distance d=25 nm, �33
b �5, and w�=1 nm,

wz /w�=3, sample thickness h→�. Solid curves are calculated
from Eq. �12� for EW�0 given by Eqs. �7�.

TABLE I. The domain characteristics calculated in different models.

Domain
characteristics

Intrinsic model of domain formation for thick films �h��d�

Case �i�: EW=0 �complete screening of
depolarization field EW�

Case �ii�: EW�0, l�=EL�0, l−0��strong
pinning or a very fast process�

Case �iii�: EW�0
�no screening of

depolarization field EW�

Coercive bias
Vc Vc=�d ·Ec Vc=�d�Ec+�E�, �E=2PS / ��0�11�2�

�dEc�Vc��d�Ec+�E�,
�E=2PS / ��0�11�2�

Domain onset
at V→Vc

Onset is activationless since oblate domain
appears with zero sizes r�Vc�=0 and l�r2

Activation barrier exists since prolate
stable domain appears with nonzero

sizes l�Vc��r�Vc��0

Nucleus is prolate, r�Vc�=0.
Spikelike stable domain

�r / l�1� appears after the
almost first-order transition

�see vertical parts of l curves�
Sizes r and l
vs bias

r�V�=d��V /Vc�2/3−1, l�V�=� ·d��V /Vc−1�,
r3 / l2��−2 at V /Vc�1

l=�d��1+r2 /d2�3/4−1�, r�V�Vc��V1/3,
l�V�Vc��V1/2

r�V��d��V /Vc�2/3−1, length
l�r is determined by fD value

Shape at
V�Vc

Equation for domain-wall boundary
	�z�= ��V /Vc�2/3d4/3� �d+z /��2/3− �d+z /��2�1/2

Domain is prolate. At high voltages
V /Vc�1 the invariant r3 / l2��−2 exists

�compare with invariant r3 / l2�const
obtained by Molotskiia�

Domain is strongly prolate.
Domain breakdown through

the sample depth �l→��
appears under the condition
infinitely thin domain-wall

width w→0

aReference 42.
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At finite film thickness, the electric field Eq. �6� at the
sample surface acquires the form

EP�	,z = 0� = Vd� d

��d2 + 	2�3/2

+ �
n=1

�
2�d + 2hn/��

���d + 2hn/��2 + 	2�3/2�
��

Vd

��d2 + 	2�1/2� d

�d2 + 	2�
+

�

h
 h � �d

Vd

��d2 + 	2�3/2 +
2V�d + 2h/��

���d + 2h/��2 + 	2�3/2 h � �d

.�
�14�

Using Eqs. �10� and �14�, the domain radius dependence vs
bias and film thickness should be calculated from the equa-
tion EP�r ,0�=Ec. The approximate analytical expressions are

r �� d��V/Ech�2 − 1 h � �d

d��V/�Ecd�2/3 − 1 h � �d
.� �15�

Note that the dependences Eq. �15� are valid for domain
lateral growth caused by the strongly inhomogeneous probe
electric field in the ferroelectric film. Bias dependences r�V�
are shown in Fig. 7. Note that the domain radius and the
coercive voltage decrease with the film thickness. Obtained
numerical values are in a reasonable agreement with Cho and
co-workers78,79 data for thin LTO films.

V. DISCUSSION

As anticipated within LGD approach considering nonlin-
ear correlation effects, the spontaneous polarization reorien-
tation takes place inside a localized spatial region, where the
absolute value of the resulting electric field is larger than the
thermodynamic coercive field, i.e., �E3��Ec while the hys-
teresis phenomenon appears in the range �E3��Ec. The do-

main breakdown through the sample depth appears for infi-
nitely thin domain walls �w�z�→0�, i.e., in the absence of
domain-wall correlation energy �� ,�→0�. The microscopic
origin of the domain tip elongation in the region where the
probe electric field is much smaller than the intrinsic coer-
cive field is the positive depolarization field appearing in
front of the moving charged domain wall. Note that the bar-
rierless hysteresis phenomenon �e.g., shown in Fig. 5 by
dashed curves� calculated within the LGD approach corre-
sponds to the metastable state,6 in contrast to activation
mechanism of the stable domain formation calculated within
the LM energetic approach. Thus, obtained results are
complementary to the energetic approach.

As noted in the introduction, within rigid LM approach
domain walls are regarded infinitely thin and polarization
absolute value is constant: −PS outside and +PS inside the
domain �if any�. Semiellipsoidal domain radius r and length
l are calculated from the free-energy excess consisting of the
interaction energy, the domain-wall surface energy �S and
the depolarization field energy �see supplement S.3 in Refs.
32, 36, 42, and 69�. Nonlinear correlation-energy contribu-
tion is absent within the rigid approximation. Within the LM
approach, the depolarization field energy vanishes as 1 / l,
while the interaction energy is maximal at l→�, the condi-
tion of negligible surface energy leads to the domain break-
down l→� and the subsequent macroscopic region repolar-
ization even at infinitely small bias �if only VPS�0�, while
the hysteresis phenomena or threshold bias �saddle point� are
absent 32. Under finite domain-wall energy, the critical bias
Vcr and energetic barrier Ea of stable domain formation exist.
Activation �or nucleation� bias Va is determined from the
condition Ea�Va�=nkBT, where the numerical factor n
=1, . . . ,25. Usually Va�Vcr for thick films 36.

In Fig. 8 we compare the main features of the probe-
induced domain formation calculated within intrinsic LGD
approach and energetic LM approach. For consistency be-
tween the approaches we used the Zhirnov expression for the
domain-wall surface energy
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FIG. 7. �Color online� Domain radius r�V� bias dependence cal-
culated within LGD theory from for typical ferroelectric materials:
�a� LTO; �b� LNO; materials parameters are listed in caption for
Fig. 6; effective distance d=25 nm, �33

b �5. Solid curves 1, 2, 3,
and 4 are calculated for different film thickness h: 10, 25, 100, and
250 nm; dashed curves correspond to the dependence r�V�
=d��V /Vc�2/3−1 valid in semi-infinite sample after the domain
breakdown.
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mental data reported by Agronin et al. �Ref. 80�.
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�S =��1 +
2��Q11

2 + Q12
2 �s11 − 2Q11Q12s12�

��s11
2 − s12

2 � ��
�− 2��3/2

3�
,

�16�

where Qij are electrostriction tensor and sij are elastic
compliances.59

It is clear from the figure that both approaches fit experi-
mental data adequately however best fitting corresponds to
higher d value �about 200 nm� within LGD approach than in
the LM approach �about 100 nm�. However for all d values
LM curve increases more rapidly with the bias increase �as
r�V��V2/3� than the experimental data.80 LGD curve in-
creases more slowly as r�V��V1/3, which is in better agree-
ment with the experimental data. The possible reason of the
discrepancy is pinning effects not considered in LM ap-
proach and considered in some sense by LGD approach al-
lowing for cubic nonlinearity that rules ferroelectric hyster-
esis.

Unfortunately, Agronin et al.80 did not report neither the
values of tip radius nor measured the effective tip size d.
Since the size d can be increased during the tip operating
�e.g., due to the tip apex erasure81�, we treat it as a fitting
parameter.

Finally, we discuss the possible role of the surface screen-
ing on nucleation process. The dominant contribution to the
electrostatic fields stem from the conducting tip-surface junc-
tion, at which potential can be assumed to be well defined. At
the region immediately outside tip-surface contact, the upper
surface potential still was determined by function Ve�x ,y�
while the bottom surface was regarded equipotential �see the
boundary conditions to Eq. �1��. Thus, the applicability of
obtained results to the realistic tip-induced domain formation
is determined from the interplay between the rate of the ap-
plied electric bias changing te, the formation time td of the
domain lateral sizes, and the relaxation time ts of the surface
screening charges that is determined by their mobility.
Namely, the strong inequalities should be valid te� ts and
te� td. Since the value te can be varied in the experiment,
below we estimate the ranges of ts and td variation.

Formation time of the domain pattern td could be esti-
mated as the domain sizes divided on the domain-wall speed
vd. In accordance with the activation-rate theory, correspond-
ing domain nucleation time � is determined from the equa-
tion �=�0 exp�Wb /kBT�, where the phonon relaxation time
�0�10−12–10−13 s, Wb is the activation barrier. For zero ex-
ternal electric field the activation barriers of polarization re-
orientation Wb in rigid ferroelectric materials considered in
the paper are extremely high. However the barrier drastically
decreases up to zero when the field approaches the intrinsic
coercive field. The same statement was proved for the PFM
probe-induced domain formation.48 For the considered case
the thermodynamic domain-wall movement appears only
when to the full electric field exceeds the intrinsic coercive
field thus it is barrierless at coercive field.

In reality possible factors, which limit the domain-wall
speed vd, are the lattice pinning, pinning by defects and in-
trinsic velocity of phonons. The latter could be estimated as

the lattice constant divided by the corresponding relaxation
time �0, which gives vd�40–400 m /s. The domain-wall
speed measured experimentally strongly depends on the ap-
plied electric field and varies in the range
10−3–102 m /s.82,83 So the formation time of the domain
with lateral sizes about 10–1000 nm could be estimated as
td�10−3–10−10 s.

The relaxation time of the surface screening charges ts is
extremely small below the conducting tip placed in the direct
contact with surface �as shown in Fig. 1�a�� since here the
free carriers abundant in the metal provide the immediate
screening. Thus the condition te� td is necessary for our re-
sults applicability until the domain lateral sizes is smaller
than the tip-surface contact radius.

The relaxation time ts increases when domain lateral sizes
exceed the tip-surface contact radius �or such contact is ab-
sent� and typically varies in the range 10−3–10−8 s depend-
ing on the ambient atmosphere �see, e.g., Refs. 36 and 84
and references therein� while for the free surface the relax-
ation time could be as high as 102 s.52 Thus we could con-
clude that the condition te� ts is necessary for our results
applicability when the domain lateral sizes is much greater
than the tip-surface contact radius. Note that both inequali-
ties te� ts and te� td can be satisfied simultaneously for
rather moderate values of the applied electric bias changing
rate te.

VI. SUMMARY

The mechanism of the bias-induced phase transitions and
domain formation in the localized electric field of an SPM
tip is analyzed using the analytical Landau-Ginzburg-
Devonshire theory and numerical phase-field modeling. This
combined approach takes into account the intrinsic domain-
wall width and nonlinear correlation effects. Obtained results
provide insight how the polarization redistribution depends
on the gradient energy, nonlinear correlation and depolariza-
tion effects, distribution of the probe’s electrostatic potential,
and ferroelectric properties of the material.

Polarization switching is found to proceed in three stages:
�1� subcritical nucleus, �2� stable domain formation and
mainly vertical growth, �3� lateral growth of the intergrown
cylindrical domain. Below the coercive bias, the polarization
distribution inside the subcritical domain nucleus is very soft
�see smooth color changes in Figs. 2�a�� with polarization
maximum directly below the probe. The corresponding elec-
tric field distribution is centered in the tip-surface junction
area. In contrast, the polarization distribution inside a stable
domain is rather hard �see contract colors in the Figs.
2�b�–2�e��. Electric field now contains a significant dipolar
component due to the depolarization field induced by the
charge domain wall at the tip apex. As bias increases, domain
penetrates through the sample depth leading to purely radial
growth appeared.

The corresponding coercive bias for the formation of a
stable domain is in reasonable agreement with available ex-
perimental results for typical ferroelectric materials. The mi-
croscopic origin of the domain elongation in the region
where the electric field of the probe is much smaller than the
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intrinsic coercive field is the positive depolarization field in
front of the moving charged domain wall. Domain break-
down through the sample depth occurs for infinitely thin do-
main walls.

Note that a high-PFM response contrast is possible when
the reversed polarization value near the probe apex is essen-
tially higher than the sample spontaneous polarization far
from the probe. The condition was obtained with the increase
in the applied bias. This opens a pathway for high-density
data storage in ultrathin layers of ferroelectric materials with
high nonlinear field and correlation effects.
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